共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomasz Sliwinski Wioletta Rozej Alina Morawiec-Bajda Zbigniew Morawiec Russel Reiter Janusz Blasiak 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2007,634(1-2):220-227
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 μM and its direct metabolite N1-acetyl-N2-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 μM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin. 相似文献
2.
3.
多种化学、物理及生物因素可诱发细胞DNA损伤,损伤后DNA损伤位点被相关损伤感受器识别,激活相应的修复通路进行DNA修复。越来越多的证据表明DNA甲基化状态、蛋白翻译后修饰、染色质重塑、miRNA等修饰方式参与了DNA的损伤修复。文章通过不同损伤修复通路中这些修饰的特点,阐述表观遗传学改变在DNA损伤修复发展过程中的作用机制。 相似文献
4.
Konstantina Marinoglou 《The Yale journal of biology and medicine》2012,85(4):469-480
It has been estimated that a human cell is confronted with 1 million DNA lesions
every day, one fifth of which may originate from the activity of Reactive Oxygen
Species (ROS) alone [1,2]. Terminally differentiated
neurons are highly active cells with, if any, very restricted regeneration
potential [3]. In
addition, genome integrity and maintenance during neuronal development is
crucial for the organism. Therefore, highly accurate and robust mechanisms for
DNA repair are vital for neuronal cells. This requirement is emphasized by the
long list of human diseases with neurodegenerative phenotypes, which are either
caused by or associated with impaired function of proteins involved in the
cellular response to genotoxic stress [4-8]. Ataxia
Telangiectasia Mutated (ATM), one of the major kinases of the DNA Damage
Response (DDR), is a node that links DDR, neuronal development, and
neurodegeneration [2,9-12]. In humans, inactivating mutations of ATM lead to
Ataxia-Telangiectasia (A-T) disease [11,13], which is
characterized by severe cerebellar neurodegeneration, indicating an important
protective function of ATM in the nervous system [14]. Despite the large number of studies on the
molecular cause of A-T, the neuroprotective role of ATM is not well established
and is contradictory to its general proapoptotic function. This review discusses
the putative functions of ATM in neuronal cells and how they might contribute to
neuroprotection. 相似文献
5.
Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
Reza Sharifi Rosa Morra C Denise Appel Michael Tallis Barry Chioza Gytis Jankevicius Michael A Simpson Ivan Matic Ege Ozkan Barbara Golia Matthew J Schellenberg Ria Weston Jason G Williams Marianna N Rossi Hamid Galehdari Juno Krahn Alexander Wan Richard C Trembath Andrew H Crosby Dragana Ahel Ron Hay Andreas G Ladurner Gyula Timinszky R Scott Williams Ivan Ahel 《The EMBO journal》2013,32(9):1225-1237
Adenosine diphosphate (ADP)‐ribosylation is a post‐translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP‐ribosylation reactions are the poly(ADP‐ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP‐ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP‐ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP‐ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP‐interacting protein that removes mono(ADP‐ribosyl)ation on glutamate amino acid residues in PARP‐modified proteins. X‐ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl‐(ADP‐ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP‐ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. 相似文献
6.
DNA damage‐induced replication stress results in PA200‐proteasome‐mediated degradation of acetylated histones 下载免费PDF全文
Imke K Mandemaker Marit E Geijer Iris Kik Karel Bezstarosti Erikjan Rijkers Anja Raams Roel C Janssens Hannes Lans Jan HJ Hoeijmakers Jeroen AA Demmers Wim Vermeulen Jurgen A Marteijn 《EMBO reports》2018,19(10)
7.
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance. 相似文献
8.
《Critical reviews in biochemistry and molecular biology》2013,48(3):261-290
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders. 相似文献
9.
10.
黄熙泰 《中国生物工程杂志》1998,18(1):45-50
DNA是遗传信息的载体,需要有极高的保真度,这不仅有赖于完善的复制体系,而且还需要有能纠正已存在错误的修复系统。对于不同的DNA损伤,生物体内存在许多不同的修复系统。本文介绍三种主要修复系统即核苷酸切割修复,错配修复及转录偶联修复的分子机制,深入研究DNA修复作用对了解某些癌症成因及细胞衰老等过程有重要意义 。 相似文献
11.
Sílvia Dyson Joana Segura Beln MartínezGarcía Antonio Valds Joaquim Roca 《The EMBO journal》2021,40(1)
The juxtaposition of intracellular DNA segments, together with the DNA‐passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin. 相似文献
12.
ObjectivesThe individual differences and pervasive resistance seriously hinder the optimization of irinotecan‐based therapeutic effectiveness. Eukaryotic translation initiation factor 3a (eIF3a) plays a key role in tumour occurrence, prognosis and therapeutic response. This study focused on the role of eIF3a in irinotecan‐induced DNA damage response.Materials and MethodsThe cck8 cell viability and clone survival analyses were used to test the regulatory role of eIF3a on irinotecan sensitivity in HT29 and CACO2 cell lines in vitro. This regulatory role was also verified in vivo by conducting subcutaneous xenograft model. Irinotecan‐induced DNA damage, cell cycle arrest and apoptosis were tested by flow cytometry analysis, TUNEL staining, western blot and comet assays. The immunofluorescence, co‐IP, luciferase reporter assay, RIP and flow cytometric analyses were carried out to investigate the underline mechanism.ResultsWe demonstrated that eIF3a continuously activates ATM/ATR signal by translationally inhibiting PPP2R5A, a phosphatase that directly dephosphorylates and inactivates ATM/ATR after DNA repair complete. Suppression of PPP2R5A resulted in chronic ATM/ATR phosphorylation and activation, impairing DNA repair and enhancing irinotecan sensitivity.ConclusionsOur study suggested eIF3a with a high potential to influence phenotypic functions, which may contribute substantially to the early identification of susceptible individuals and the provision of personalized medication to irinotecan‐treated patients. 相似文献
13.
Anuradha Kumari Olga M. Mazina Ujwal Shinde Alexander V. Mazin Hua Lu 《Journal of cellular biochemistry》2009,108(2):508-518
A possible role for structure‐specific recognition protein 1 (SSRP1) in replication‐associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication‐associated DNA damage, in mammalian cells. Surprisingly, over‐expression of SSRP1 reduced the number of hprt+ recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double‐strand break formation. In correlation, we found that the depletion of SSRP1 in HU‐treated human cells elevated the number of Rad51 and H2AX foci, while over‐expression of the wild‐type SSRP1 markedly reduced HU‐induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54‐promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication‐associated DNA damage response by suppressing avoidable HR repair events. J. Cell. Biochem. 108: 508–518, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
14.
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes. 相似文献
15.
María B. Birkisdttir Dick Jaarsma Renata M. C. Brandt Sander Barnhoorn Nicole van Vliet Sandra Imholz Conny T. van Oostrom Bhawani Nagarajah Eliana Portilla Fernndez Anton J. M. Roks Ype Elgersma Harry van Steeg Jos A. Ferreira Jeroen L. A. Pennings Jan H. J. Hoeijmakers Wilbert P. Vermeij Martijn E. T. Doll 《Aging cell》2021,20(2)
16.
Ning Xia Nannan Yang Qungang Shan Ziyin Wang Xiaoyu Liu Yingjie Chen Jian Lu Wei Huang Zhongmin Wang 《Journal of cellular and molecular medicine》2022,26(8):2322
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo‐ and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo‐ and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non‐tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2‐YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer‐related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2‐YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC. 相似文献
17.
18.
Ragini Kumari Kamaleshwar P. Singh James W. DuMond Jr. 《Journal of cellular biochemistry》2009,107(4):723-731
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
19.
Anirban Chakraborty Maki Wakamiya Tatiana Venkova-Canova Raj K. Pandita Leopoldo Aguilera-Aguirre Altaf H. Sarker Dharmendra Kumar Singh Koa Hosoki Thomas G. Wood Gulshan Sharma Victor Cardenas Partha S. Sarkar Sanjiv Sur Tej K. Pandita Istvan Boldogh Tapas K. Hazra 《The Journal of biological chemistry》2015,290(41):24636-24648