首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 3-sn-Phosphatidylcholine was identified as the major lipid in cotyledons from the developing seeds of soya bean, linseed and safflower when tissue was steamed before lipid extraction. The proportion of oleate in this lipid decreased markedly and that of the polyunsaturated C18 fatty acids increased when detached developing cotyledons were incubated for up to 3h. Similar but less pronounced changes occurred in diacylglycerol, which had a fatty acid composition resembling that of the 3-sn-phosphatidylcholine from cotyledons of the same species. 2. [1-14C]Acetate supplied to detached cotyledons was incorporated into the acyl moieties of mainly 3-sn-phosphatidylcholine, 1,2-diacylglycerol and triacylglycerol. Initially label was predominantly in oleate, but subsequently entered at accelerating rates the linoleoyl moieties of the above lipids in soya-bean and safflower cotyledons and the linoleoyl and linolenyl moieties of these lipids in linseed cotyledons. In pulse–chase experiments label was rapidly lost from the oleate of 3-sn-phosphatidylcholine and accumulated in the linoleoyl and linolenoyl moieties of this phospholipid and of the di- and tri-acylglycerols. 3. [2-3H]Glycerol was incorporated into the glycerol moieties of mainly 3-sn-phosphatidylcholine and di- and tri-acylglycerols of developing linseed and soya-bean cotyledons. The label entered the phospholipid and diacylglycerol at rates essentially linear with time from the moment the substrate was supplied, and entered the triacylglycerol at an accelerating rate. With linseed cotyledons the labelled glycerol was incorporated initially mainly into species of 3-sn-phosphatidylcholine and diacylglycerol that contained oleate, but accumulated with time in more highly unsaturated species. In pulse–chase experiments with linseed cotyledons, label was lost from both 3-sn-phosphatidylcholine and diacylglycerol, preferentially from the dioleoyl species, and accumulated in triacylglycerol, mainly in species containing two molecules of linolenate. 4. The results suggest a rapid turnover of 3-sn-phosphatidylcholine during triacylglycerol accumulation in developing oilseeds, and are consistent with the operation of a biosynthetic route whereby oleate initially esterified to the phospholipid is first desaturated, then polyunsaturated fatty acids transferred to triacylglycerol, via diacylglycerol. The possible role of oleoyl phosphatidylcholine as a substrate for oleate desaturation is discussed.  相似文献   

2.
Triacylglycerol lipase with maximal activity at pH 5 was present in adult and fetal lung. The activity was inhibited by serum concentrations used to measure lipoprotein lipase and by 0.5 M NaCl. The activity in homogenates from fetal lung was about 40% of the activity in adult lung homogenates. The activity increased to 80% of the adult levels during the first 24–48 h following birth. Acidic triacylglycerol lipase was present in all subcellular fractions from adult lung. However, the major amount of activity appeared to be associated with lysosomes. Fetal lung contained significantly more activity in the cytosolic fraction compared to the adult. The reaction produced free fatty acids (65%), 1,2(2,3)-diacylglycerol (22%) and 2-monoacylglycerol (12%). Minimal amounts of 1,3-diacylglycerol and 1(3)-monoacylglycerol were formed. Diacylglycerol lipase and monoacylglycerol hydrolase activities at pH 5 were independently determined and both were higher than the triacylglycerol lipase activity. The subcellular distribution of diacylglycerol lipase and monoacylglycerol hydrolase differed from that of triacylglycerol lipase. Overall, the results indicated that the lung has considerable intracellular lipase activity and therefore could readily hydrolyze intracellular triacylglycerol to free fatty acids. The reaction also produced significant amounts of 1,2-diacylglycerol which suggests that triacylglycerol could be a direct source of diacylglycerol for phospholipid synthesis.  相似文献   

3.
The acylglycerol content of Saccharomyces cerevisiae has been examined during cellular growth. The cells maintained a constant amount of phospholipid and diacylglycerol throughout growth. Triacylglycerol content fell in the early exponential phase of growth and then increased sharply upon entry of the culture into the stationary growth phase. Pulse-chase experiments with [1-14C]oleic acid and [2-3H]- and [1-14C]glycerol indicated that the triacylglycerol molecule was utilized for phospholipid synthesis in early exponential phase probably through a diacylglycerol intermediate. A substantial turnover of phospholipid during growth was also apparent. No role for the triacylglycerol could be found in regulating the fatty acid species of the phospholipid nor in the storage of fatty acid for energy metabolism.  相似文献   

4.
Soybean (Glycine max [L.] Merr.) plants with the first trifoliate leaf fully expanded were exposed to 4 and 8 days of water stress. Leaf water potentials dropped from −0.6 megapascal to −1.7 megapascals after 4 days of stress; then to −3.1 megapascals after 8 days without water. All of the plants recovered when rewatered. The effects of short-term drought stress on triacylglycerol, diacylglycerol, phospholipid, and galactolipid metabolism in the first trifoliate leaves was determined. Leaf triacylglycerol and diacylglycerol content increased 2-fold during the first 4 days of stress and returned to control levels 3 days after rewatering. The polar lipid fraction, which contained phospholipids and galactolipids, changed little during this time. The linolenic acid (18:3) content of the triacylglycerol and diacylglycerol increased 25% during stress and the polar lipid 18:3 content decreased 15%. The pattern of glycerolipid labeling, after applying [2-14C]acetate to intact leaves was altered by water stress. After 4 days of water stress the radioactivity of phosphatidic acid + phosphatidylinositol, phosphatidylcholine, triacylglycerol, and diacylglycerol increased between 4 and 9% (compared to control plans) while radioactivity of phosphatidylethanolamine, monogalactosyldiglyceride, and digalactosyldiglyceride decreased 2 to 11%. These data indicated that increased levels of triacylglycerol and diacylglycerol observed during water stress were attributed to de novo synthesis rather than breakdown or reutilization of existing glycerolipids and fatty acids.  相似文献   

5.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

6.
The effect of dietary soybean phospholipid on the activities of hepatic triacylglycerol-synthesizing enzymes was compared with soybean oil in fasted-refed rats. Soybean oil at the dietary level corresponding to 20% but not at 5% fatty acid level (21.2 and 5.3% on weight bases, respectively) significantly decreased liver microsomal diacylglycerol acyltransferase activities measured with the endogenous diacylglycerol substrate. Dietary soybean phospholipid even at the dietary level corresponding to 2% fatty acids (3.4% on weight base) significantly decreased the acyltransferase activities measured with endogenous substrate. The dietary phospholipid further decreased the parameter as the dietary level increased, and at the 5% fatty acid level, it was lower than that obtained with soybean oil at 20% fatty acid level. Soybean oil and phospholipid decreased the diacylglycerol acyltransferase activities measured with the saturating concentration of exogenous dioleoylglycerol substrate only when the activities were expressed in terms of total activity (mumol/min per liver) but to much lesser extents. Dietary phospholipid compared to the oil profoundly decreased not only hepatic triacylglycerol but also microsomal diacylglycerol levels. It was indicated that the availability of microsomal diacylglycerol as the substrate for diacylglycerol transferase is the critical determinant in regulating hepatic triacylglycerol synthesis and concentration in this experimental situation. Alterations in the activities of microsomal glycerol 3-phosphate acyltransferase and of the enzymes in fatty acid synthesis could account for the phospholipid-dependent decrease in the microsomal concentration of this intermediate in triacylglycerol synthesis.  相似文献   

7.
Given the same quantity of fatty acid, livers from male rats esterify less fatty acid and secrete less triacylglycerol in very-low-density lipoprotein than do livers from female animals. To elucidate the role of testosterone in maintenance of this male pattern, conversion of [1-14C]oleic acid into triacylglycerol was assessed in vitro by rat hepatocytes (male) following gonadectomy and replacement with testosterone. Following castration, incorporation of fatty acid into triacylglycerol was increased. In contrast, esterification of exogenous fatty acid into phospholipid, cholesteryl esters, and diacylglycerol was unchanged. Treatment with testosterone (75 micrograms/day) reduced incorporation of exogenous fatty acid into triacylglycerol. Higher doses of testosterone (200 or 100 micrograms/day) modified the effect, such that inhibition was observed only at low oleate (0.5 mM) concentrations. At higher substrate concentrations (1.0-2.0 mM) the inhibitory effect was no longer observed. Further, a similar dose-dependent effect of testosterone was observed following in vivo treatment of castrate females with testosterone. These data support the concept of a regulatory role of testosterone in hepatic triacylglycerol synthesis. These findings also demonstrate a biphasic effect of testosterone, an effect that is dependent not only upon the dose of testosterone administered, but also on the concentration of fatty acid to which the hepatocyte is exposed in vitro.  相似文献   

8.
Free fatty acids added in ethanol to human platelets prelabelled with [14C]arachidonate induce an accumulation of radioactive diacylglycerol. Unsaturated fatty acids are ten times more potent than palmitate. Ethanol alone does not alter the distribution of radioactivity. Increasing the concentration of arachidonate leads to increased diacylglycerol formation. The fatty acid effect is independent of thrombin, which itself causes a relatively small change in diacylglycerol levels. Neither the labelled triacylglycerol nor the labelled free fatty acid appears to be the source of the diacylglycerol formed which may arise from the activation of phosphatidylinositol phosphodiesterase.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, triacylglycerol mobilization for phospholipid synthesis occurs during growth resumption from stationary phase, and this metabolism is essential in the absence of de novo fatty acid synthesis. In this work, we provide evidence that DGK1-encoded diacylglycerol kinase activity is required to convert triacylglycerol-derived diacylglycerol to phosphatidate for phospholipid synthesis. Cells lacking diacylglycerol kinase activity (e.g. dgk1Δ mutation) failed to resume growth in the presence of the fatty acid synthesis inhibitor cerulenin. Lipid analysis data showed that dgk1Δ mutant cells did not mobilize triacylglycerol for membrane phospholipid synthesis and accumulated diacylglycerol. The dgk1Δ phenotypes were partially complemented by preventing the formation of diacylglycerol by the PAH1-encoded phosphatidate phosphatase and by channeling diacylglycerol to phosphatidylcholine via the Kennedy pathway. These observations, coupled to an inhibitory effect of dioctanoyl-diacylglycerol on the growth of wild type cells, indicated that diacylglycerol kinase also functions to alleviate diacylglycerol toxicity.  相似文献   

10.
Atmospheric pressure chemical ionization liquid chromatography–mass spectrometry was used in the identification of triacylglycerol molecular species in lymph samples from rats given either a structured lipid or safflower oil. The structured lipid was MLM-type (M, medium-chain fatty acid; L, long-chain fatty acid) and manufactured from caprylic acid (8:0) and the oil (safflower oil or high-oleic sunflower oil). The triacylglycerol composition of lymph varied significantly between structured triacylglycerols and safflower oil. Diacylglycerol fragment ions were found for all triacylglycerols and we could also observe the ammonium adduct molecular ion [M+NH4]+ for all the triacylglycerols at the selected conditions. Protonated molecular ions were formed from triacylglycerols containing unsaturated fatty acids, and fatty acid fragment ions were also observed in the case of strong fragmentation. The lymph triacylglycerols were identified from their ammonium adduct molecular ions and diacylglycerol fragment ions. In addition to the intact MLM-type structured triacylglycerols, the MLL- and LLL-type triacylglycerols were also identified. The absorption pathway of MLM-type structured triacylglycerols is most likely the same as that of conventional long-chain triacylglycerols, i.e. they were hydrolyzed into 2-monoacylglycerol and medium-chain fatty acids, which were then used for resynthesis of triacylglycerols. The present study thereby also demonstrates the possibility to study the absorption pathway of triacylglycerol via identification of triacylglycerol species in biological samples.  相似文献   

11.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

12.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

13.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

14.
Incorporation of [1-14C] acetate into various phospholipid and triacylglycerol fatty acids showed cyclic fluctuations in fatty acid biosynthesis that were similar for all of the major fatty acids in both male and female house crickets, Acheta domesticus, during development. All three stadia showed low levels of biosynthesis near ecdysis followed by increased synthesis to a peak at midstadium. In the phospholipid fraction, the incorporation of newly synthesized saturated fatty acids, 16:0 and 18:0, predominated near ecdysis, while at midstadium linoleic acid was the most actively synthesized fatty acid. In the triacylglycerol fraction, 18:0 and 18:1 predominated throughout the entire stadium. In contrast to the large fluctuations in fatty acid biosynthesis, the fatty acid compositions of the phospholipid and triacylglycerol fractions did not change within a stadium. However, significant differences were demonstrated between the stages and were associated primarily with differences between nymphal and adult stadia. Males and females differed in the proportions of 16:0 and 18:2 incorporated into phospholipids with females showing a greater proportion of 18:2 and a corresponding smaller proportion of 16:0 than males. The greater proportion of linoleic acid in females and in adults in general compared to nymphs and the predominance of the incorporation of newly synthesized linoleic acid into the phospholipid fraction of all stadia are consistent with the importance of this fatty acid in a number of biological roles.  相似文献   

15.
Developing soybean (cv. Dare) cotyledons harvested at 30 days after flowering were pulse-labeled with [1-(14)C]oleoyl-CoA. The metabolic interrelation of radiolabeled unsaturated fatty acids between the major glycerolipid classes was determined at various time intervals. At chase time zero, [(14)C]oleic acid accounted for 99.2% of the total glycerolipid radioactivity, and phospholipids contained 92% of the total incorporated radioactivity. With time, phospholipids were metabolized in triacylglycerol biosynthesis and radioactivity was detected in polyunsaturated fatty acids. The hypothesis that phospholipids were metabolic intermediates in polyunsaturated fatty acid biosynthesis was tested by comparing the theoretical and the actual amount of radiolabeled oleic acid that was associated with triacylglycerol as a function of time. The radioactive oleic acid found in triacylglycerol at various intervals was derived from phospholipids via a diacylglycerol intermediate. Assuming no phospholipid desaturation, the potential or theoretical amounts of [(14)C]oleic acid that could be transferred to triacylglycerol from phospholipids was defined by a system of differential equations. The results demonstrated that the decline in [(14)C]oleic acid from phospholipid after long chase intervals was equal to the total amount of radioactive unsaturated fatty acids found in neutral lipids. The difference between the theoretical and actual amounts of [(14)C]oleic acid present in triacylglycerol after long time intervals was equal to the amount of radioactivity present in polyunsaturated fatty acids. Based upon those findings in soybeans, the desaturation of oleic acid associated with phospholipids was highly probable.  相似文献   

16.
A. K. Stobart  S. Stymne 《Planta》1985,163(1):119-125
The utilisation of [14C]glycerol 3-phosphate and [14C]linoleoyl-CoA in the synthesis of triacylglycerol has been studied in the microsomal preparations of developing cotyledons of safflower seed. The results confirm that the glycerol backbone, which flows towards triacylglycerol from phosphatidic acid through the Kennedy pathway, can enter phosphatidylcholine from diacylglycerol. The equilibration between diacylglycerol and phosphatidylcholine offers a mechanism for the return of oleate to phosphatidylcholine for desaturation to linoleate. We have established that the oleate entering position 1 of sn-phosphatidylcholine from diacylglycerol is desaturated in situ to linoleate. The results indicate that the diacylglycerol phosphatidylcholine interconvertion coupled to the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18-polyunsaturated fatty acids and hence these enzymes are of major importance in regulating the acyl quality of the accumulating triacylglycerols. Microsomal preparations from avocado mesocarp, however, did not have detectable acyl exchange between acyl-CoA and phosphatidylcholine or diacylglycerol phosphatidylcholine interconversion despite the high activity of the enzymes of the Kennedy pathway. A scheme is presented which incorporates many of the observations on triacylglycerol synthesis and provides a working model for the regulation of acyl quality in linoleate-rich vegetable oils.Abbreviation BSA bovine serum albumin  相似文献   

17.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

18.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

19.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

20.
Microsomal monoacyglycerol acyltransferase is a developmentally expressed enzyme that catalyzes the synthesis of sn-1,2-diacylglycerol from sn-2-monoacylglycerol and palmitoyl-CoA. The activity is present in liver from fetal and suckling rats but is absent in the adult. In order to obtain a stable permanent cell line that expresses this activity, Fao rat hepatoma cells and hepatocytes from 8-day-old baby rats were hybridized and clones were selected. Two hybrids (HA1 and HA7) expressed monoacylglycerol acyltransferase activity. Like fetal hepatocytes, but unlike hepatocytes from postnatal rats, the HA cells had high rates of [14C]acetate incorporation into glycerolipids, cholesterol, and cholesteryl esters, and they secreted triacylglycerol into the media. Monoacylglycerol acyltransferase specific activity increased 2.5-fold as the cells divided in culture, suggesting growth-dependent regulation. The specific activities of glycerol-P acyltransferase, the committed step of the microsomal pathway of glycerolipid synthesis, and diacylglycerol acyltransferase, the activity unique to triacylglycerol biosynthesis, were comparable to the levels of the corresponding activities in fetal hepatocytes. Addition of insulin or dexamethasone to the media increased the incorporation of [14C]oleate into triacyglycerol about 1.7-fold within 2 h, but had little effect on [14C]oleate incorporation into phospholipid. These hormonally responsive rat-hepatoma/hepatocyte hybrids reflect the fetal stage of hepatocyte development in five major aspects of lipid metabolism: sterol, fatty acid, and triacylglycerol biosynthesis, glycerolipid secretion, and the presence of the developmentally expressed monoacylglycerol pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号