首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mammary epithelial cells from virgin Balb/c mice were isolated by collagenase digestion and cultured within collagen gels in serum-free basal medium containing insulin (10 micrograms/ml). Previous work has shown that linoleate or its metabolite, prostaglandin E2 (PGE2), stimulate the growth of these cells only in the presence of a growth stimulant such as epidermal growth factor (EGF). Since PGE2 can stimulate cyclic AMP (cAMP) production, the role of cAMP in linoleate and EGF-stimulated growth was examined. The cAMP phosphodiesterase inhibitor, IBMX (0.1 mM), was found to augment growth when cells were cultured in the presence of both EGF and linoleate or PGE2, but not either factor alone. These results indicated that EGF does not stimulate proliferation via cyclic AMP mediated events but could synergize with cAMP events if cAMP levels were elevated by PGE2. When assayed in cells plated on top of collagen-coated culture dishes, cellular cyclic AMP levels were stimulated by PGE2, but only marginally by EGF. Although the stimulation of endogenous cAMP by PGE2 and IBMX was insufficient to stimulate growth in the absence of EGF, exogenous dibutyryl-cAMP (greater than 100 micrograms/ml) was able to do so showing that a sustained, and high level of cAMP (greater than 100 micrograms/ml) could stimulate growth in insulin-containing basal medium. EGF was capable of enhancing the cellular sensitivity to dibutyryl-cAMP but the converse was not observed. cAMP stimulation of growth was dependent upon a superphysiological concentration of insulin (10 micrograms/ml) or a physiological concentration of somatomedin-C. These results indicate that the proliferation of mouse mammary epithelial cells can be stimulated separately or in synergism by cAMP-dependent or -independent events.  相似文献   

2.
The effect of mesenchyme on both proliferation and differentiation of mammary epithelial cells was investigated in a primary cell culture system. Mammary cells cultured on collagen gel for 4 days produced casein in response to the synergistic action of insulin, cortisol, and prolactin. When mammary epithelial cells were co-cultured with fibroblasts derived from three different kinds of fetal mesenchymal tissues, casein production was suppressed. The addition of conditioned media obtained from cultures of these mesenchymal cells stimulated DNA synthesis and reduced casein synthesis in a dose-dependent fashion in the cultured mammary cells. Although such biological actions are similar to those of epidermal growth factor (EGF), the capability to compete with EGF for EGF receptor was not found in this conditioned medium. Sephadex G-200 column chromatography revealed that molecular weight of the peak which has these biological activities was around 100,000. These results indicate that fetal mesenchymal cells secrete a substance(s) which has a stimulatory effect on proliferation and an inhibitory effect on differentiation of mammary epithelial cells.  相似文献   

3.
Histamine (0.5 mM) stimulated the cyclic AMP content of cell suspensions containing greater than 80% parietal cells. Epidermal growth factor (EGF) inhibited this stimulatory effect of histamine, but had no effect on basal cyclic AMP content. The half-maximally effective concentration of EGF for inhibition of histamine-stimulated cyclic AMP was 3.9 nM. The equivalent measurement for the inhibition of histamine-stimulated aminopyrine accumulation was 3.0 nM. Aminopyrine accumulation was measured because it provides an index of the secretory activity of the cell. The cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibitory effect of EGF on cyclic AMP content. This effect of IBMX was not caused by its ability to raise cellular cyclic AMP content in the presence of histamine. Prevention by IBMX of the inhibitory action of EGF on histamine-stimulated aminopyrine accumulation had been shown previously [Shaw, Hatt, Anderson & Hanson (1987) Biochem. J. 244, 699-704]. EGF stimulated prostaglandin E2 (PGE2) production in the cell fraction containing greater than 80% parietal cells, with the half-maximally effective concentration being 7.5 nM. EGF was ineffective in stimulating PGE2 production if the cell fraction was depleted of parietal cells (12%), or if 0.5 mM-histamine was added to the enriched parietal-cell fraction. In conclusion, EGF may inhibit histamine-stimulated acid secretion by decreasing the cyclic AMP content of parietal cells. This effect could be mediated by an increase in cyclic AMP phosphodiesterase activity, but it is unlikely to involve an effect of EGF on parietal-cell prostaglandin production.  相似文献   

4.
The present study was carried out to examine whether activation of adenosine receptors by adenosine analogues will affect casein production by mouse mammary epithelial cells. The morphogenesis and functions of epithelial tissue in the mammary gland are influenced by their surrounding adipocytes. Adipocytes are known to release adenosine into the extracellular fluid which can modulate cyclic-AMP levels in surrounding cells through binding to their adenosine receptors. To examine a possible paracrine effect of adenosine, the modulation of casein production in mammary explant culture and mammary epithelial cell (MEC) culture by adenosine receptor agonists has been investigated. We have observed that activation of the A1-adenosine receptor subtype in mammary tissue by an adenosine analogue (—)N6-(R-phenyl-isopropyl)-adenosine (PIA) raised cAMP levels. PIA and another adenosine receptor agonist, isobutylmethylxanthine (IBMX), inhibited casein accumulation both in explants and in MEC cultures in the presence of lactogenic hormones, which suggests that PIA or adenosine can act directly on the epithelial cells. This inhibition does not appear to be caused by elevation of cAMP levels or phosphodiesterase activity. The inhibition of intracellular casein accumulation by PIA and IBMX in explant cultures can be reversed via treatment of pertussis toxin which is known to ADP-ribosylate GTP-binding Gαi-proteins, indicating that a Gi-protein-dependent pathway may be involved in this inhibition. The results also suggest that local accumulation of adenosine in the extracellular fluids of mammary glands is likely to inhibit the lactogenic response of mammary epithelial cells. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Parathyroid hormone-related protein (PTHrP) plays a major role in the pathogenesis of malignant hypercalcemia, but has also been found in fetal and adult non-neoplastic tissues. Among them, lactating mammary gland was shown to produce PTHrP, and high levels of PTHrP were measured in milk. However, the regulation of PTHrP production by breast cells is still unknown. Primary cultures of mammary cells isolated from rat lactating glands were grown on collagen gels in an insulin/epidermal growth factor (EGF)-supplemented medium. Under these conditions, mammary cells displayed an epithelial phenotype and their number increased more than twofold after 1 week in culture. At that time, the cells were capable of producing immunoreactive PTHrP (range: 25 to 150 pg/10(5) cells x 24 h) and PTH-like bioactivity, as indicated by a 60% increase in cyclic adenosine monophosphate (cAMP) production induced by mammary epithelial cell conditioned medium in the PTH-responsive osteoblast-like UMR-106 cell line. When cell proliferation was hindered by lowering plating density, by removing medium supplements, or by adding transforming growth factor (TGF)-beta, a well-known autocrine inhibitor of mammary epithelial cell growth. PTHrP production was increased. In contrast, the omission of EGF or addition of specified anti-EGF antibodies decreased PTHrP production. In conclusion, primary cultures of mammary epithelial cells isolated from lactating rat were shown for the first time to produce PTHrP in vitro. This production was higher in the presence of EGF and could be modulated by cell growth rate.  相似文献   

6.
In testicular Leydig cells, forskolin causes the expected stimulation of cAMP and testosterone production and potentiates gonadotropin-induced responses, when present in concentrations of 1-10 microM. In addition, when added at lower doses that did not affect cAMP generation and testosterone responses (100 nM), forskolin caused an increase in sensitivity to hormonal stimulation for all cAMP pools (extracellular, intracellular, and receptor-bound) and a 70% reduction in the ED50 for human chorionic gonadotropin (hCG) stimulation of testosterone production. Forskolin-induced increases in receptor-bound cAMP were less effective than those elicited by hCG in stimulating steroidogenesis. In contrast to the well-known stimulatory actions of forskolin, low doses of the diterpene (in the picomolar to nanomolar range) markedly inhibited the production of cAMP and testosterone. Such inhibitory actions of low-dose forskolin were prevented by preincubation of Leydig cells with pertussis toxin before addition of forskolin and/or hCG. Low concentrations of forskolin also inhibited adenylate cyclase activation by GTP and luteinizing hormone, and this effect was prevented by pretreatment of cell membranes with pertussis toxin. These studies have defined the stimulatory effects of forskolin on Leydig-cell cAMP pools, including potentiation of the hormonal increase in receptor-bound cyclic AMP by forskolin, and have provided additional evidence for the functional importance of cAMP compartmentalization during hormonal stimulation of steroidogenesis. We have also demonstrated a novel, high-affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation, an effect that appears to be mediated by the Ni guanine nucleotide regulatory subunit of adenylate cyclase.  相似文献   

7.
The growth of human epithelial cells is stimulated by cholera toxin and analogues of cyclic AMP, while the growth of breast derived fibroblasts is inhibited. These compounds have little effect on DNA synthesis in the absence of other mitogens but show a synergistic effect with serum and/or EGF. The results suggest that high intracellular levels of cyclic AMP in human mammary epithelial cells increase the growth response of the cell to mitogens.  相似文献   

8.
The secretagogue effect of prolactin (PRL) on casein release by epithelial mammary cells has been previously related to stimulation of the phospholipase A2-arachidonic acid cascade. In order to determine whether other intracellular pathways are implicated in this secretagogue effect, different agents acting on protein kinase C (PKC) and phospholipase C (PLC) activity have been assessed in vitro in lactating rabbit mammary gland fragments. Phorbol ester (20 nm TPA and 1-oleoyl-2-acetyl-sn-glycerol (10 microM (OAG) stimulated newly synthesized casein secretion and potentiated the PRL secretatogue effect. However, 100 microM quercetin, 100 microM H-7 and 5 and 20 nM staurosporine did not inhibit the latter effect. Exogenous PLC did not stimulate casein secretion. PRL did not affect production of inositol phosphates (IPs) during 10 or 60 min exposure. These results show that PKC activation may increase basal levels of casein secretion, and demonstrate that PRL does not act primarily via PKC activation or by PLC activation to stimulate casein secretion.  相似文献   

9.
10.
Rat mammary glands contain cyclic AMP-independent casein kinase and cyclic AMP-dependent histone kinase. The former was easily isolated from cyclic AMP-dependent histone kinase by MgCl2 treatment. Mammary casein kinase was not activated by cyclic nucleotides, and Mg++ and ATP were required for activation. The specific activity of casein kinase in cytosol of rat mammary epithelial cells increased 2 to 3-fold during pregnancy and lactation. Cytosol of mouse mammary epithelial cells also contained cyclic AMP-independent casein kinase, and the activity of this enzyme was about three times that of the Golgi fraction.  相似文献   

11.
The effects of kaurenol, a diterpene alcohol, were evaluated on progesterone and cyclic AMP (cAMP) production in freshly dispersed avian granulosa cells. Kaurenol (50 microM) alone caused a fourfold increase in progesterone synthesis without a measurable influence on cAMP levels. When granulosa cells were challenged with near-maximally stimulating concentrations of LH (50 ng/ml) or forskolin (10 microM), kaurenol (10-100 microM) dose-dependently suppressed steroidogenesis. Similarly, cAMP production in response to LH and forskolin stimulation was also inhibited. When progesterone synthesis was stimulated by the addition of pregnenolone or 25-hydroxycholesterol substrates to the culture medium, the typical dose response to the latter precursor, but not to pregnenolone, was abolished by kaurenol. Whereas the mechanism of kaurenol's stimulatory effect on basal steroidogenesis remains unknown, it is suggested that its inhibitory action on LH- and forskolin-promoted progesterone production may be due to the inhibition of the adenylate cyclase cAMP effector system as well as to the impairment of the action of the mitochondrial cholesterol side chain cleavage enzyme system.  相似文献   

12.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

13.
The inhibition of human platelet aggregation produced by PGF2 alpha is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF2 alpha (8 microM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 microM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 microM), but not PGF2 alpha (28 microM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets. PGF2 alpha produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF2 alpha is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF2 alpha. We suggest that the very weak effect of PGF2 alpha on cyclic AMP production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

14.
Porcine vasoactive intestinal peptide stimulated adenosine 3':5'-monophosphate (cyclic AMP) production in rat intestinal epithelial cells. The stimulation was dependent on time and temperature and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Under optimal conditions (at 15 degrees C, with 0.2 mM 3-isobutyl-1-methylaxanthine, at a cell concentration up to 18 microgram DNA/ml), the cyclic AMP production produced by vasoactive intestinal peptide was constant for 10 min and stopped after 15 min incubation, at either low (1 nM) or high (30 nM) concentration of the peptide. This plateau effect was demonstrated not to be due to an inactivation of vasoactive intestinal peptide in the medium nor to an alteration of receptors for the peptide. Cyclic AMP production was sensitive to a concentration as low as 0.1 nM vasoactive intestinal peptide. Maximal stimulation of cyclic AMP levels by vasoactive intestinal peptide was observed with 30 nM vasoactive intestinal peptide and represented an 11-fold increased above basal. The dorse-response curve was monophasic with a Km of 2.3 x 10(-9) M. No cooperative effects were detected by Hill analysis. The positive non-linear relationship observed between stimulation of cyclic AMP production and occupancy of binding site was not time-dependent as indicated by experiments performed after 15, 45 and 120 min incubation. Maximal and half-maximal responses were obtained at about 70% and 7% occupation of binding sites, respectively. Chicken vasoactive intestinal peptide and porcine secretin were agonists of porcine vasoactive intestinal peptide with a 6-times and a 120-times lower potency, respectively. Among secretin analogs that were found to have low affinity for vasoactive intestinal peptide binding sites, [4-alanine, 5-valine]secretin, that resembles vasoactive intestinal peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive intestinal peptide and others failed to stimulate cyclic AMP production. Glucagon (10microM), gastric inhibitory peptide (0.1 microM), substance, P, neurotensin, octapeptide of cholecystokinin, bovine pancreatic polypeptide, human gastrin I with leucine at residue 15, Leu-enkephalinand somatostatin (1 microM) did not alter cyclicAMP levels. Non-peptide mediators such as dopamine, serotonin, acetylcholine and histamine, tested at 10 microM, were also ineffective. Prostaglandins E2, E1 and isoproterenol, tested at 10 microM, induced an increase of cyclic AMP levels above basal but were 9.5, 13.7 and 17.5 times less efficient than vasoactive intestinal peptide, respectively. Thus vasoactive intestinal peptide is a unique stimulus of cyclic AMP production in rat intestinal epithelial cells.  相似文献   

15.
A mercurial-insensitive ectoATPase, which was more active with CaATP than with MgATP, was induced when human hepatoma (Li-7A) cells were cultured in the presence of epidermal growth factor (EGF) and cholera toxin. Cholera toxin could be replaced by forskolin, 8-Br-cAMP, butyryl-cAMP, and dibutyryl-cAMP. Requirement for EGF was specific, but EGF was ineffective if added more than 24 h after the addition of forskolin or cholera toxin. It was concluded that induction of the ectoCa2(+)-ATPase was a consequence of the synergistic actions of EGF and cyclic AMP. The tyrosine kinase activity of the EGF receptor was essential for the induction of ectoCa2(+)-ATPase, since enzyme induction was abolished by a tyrosine kinase inhibitor, genistein. Cycloheximide and actinomycin D were also inhibitory to enzyme induction, indicating that enhancement of enzyme activity by EGF and cAMP was not due to post-translational modification. The results of this and previous investigations established that the two ectoATPases of Li-7A cells are under different regulation.  相似文献   

16.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

17.
The existence of two cyclic nucleotide-independent protein kinases in the cytosolic extract of mouse mammary gland has been determined via DEAE-cellulose and Sephacryl column chromatography. Both enzymes phosphorylated casein in the absence of the exogenous cyclic nucleotides, cAMP and cGMP. One protein kinase was found to have a molecular weight of approx. 30 000, while the other was found to have a molecular weight in the range 150 000-250 000. The activity of the larger species was enhanced by polyamines and inhibited by heparin. This enzyme utilized both ATP and GTP as phosphate donors; the apparent Km values were 10 and 16 microM, respectively. The lower molecular weight protein kinase was not affected by either polyamines or heparin and utilized only ATP (Km = 8 microM) as the phosphate donor. The polyamine-responsive protein kinase activity in the mammary gland varied as a function of the reproductive development of the mouse. The activity was relatively low in the virgin and primiparous stages, increased during pregnancy and peaked during lactation. Studies using mammary organ culture indicated that the combination of insulin (5 micrograms/ml), cortisol (1 micrograms/ml) and prolactin (5 micrograms/ml) maintained the polyamine-responsive protein kinase activity that was present in noncultured tissue. In the absence of prolactin, however, the kinase activity was significantly lower than that observed in the three-hormone system. When dibutyryl cyclic AMP (0.5 mM) was added to the medium along with the three hormones, a significant decrease in enzyme activity was found. Slab gel electrophoresis and autoradiography showed that the majority of the phosphorylated endogenous substrates in the cytosolic fraction were caseins. The results of this study suggest that the polyamine-responsive protein kinase may play an important role in the growth and development of the mammary gland.  相似文献   

18.
In this study, we have analyzed the role of cyclic AMP (cAMP) as the mediator of the decrease in action potential duration induced by diazepam. Diazepam (1-100 microM) reduced, in a dose-dependent manner, the duration of intracellular action potential recorded in the papillary muscle obtained from the right ventricle of the guinea pig heart. This effect was mimicked by the analog of cyclic AMP, 8-Br-cAMP (100 microM), but not by gamma-amino-butyric acid (GABA). Also, the selective antagonist of the benzodiazepine receptors, flumazenil did not modify the effect of diazepam. The diazepam-induced shortening of action potential duration was partially antagonized by the inhibitor of cAMP synthesis carbachol (1 microM) or the blocker of the cAMP-dependent protein kinase A, Rp-cAMP[S] (1 microM). These results indicate that cyclic AMP is involved in the diazepam-induced shortening of the action potential duration of the guinea pig papillary muscle.  相似文献   

19.
20.
NMuMG cells were incubated with 17beta-estradiol (E)+progesterone (P)+epidermal growth factor (EGF), with or without various types of oligomers (21-mers) to the EGF receptor activity domain (amino acid residues 718 to 724). Sense or antisense oligomers were encapsulated in protein A-bearing liposomes. Uncoupled protein A and unencapsulated sense or antisense oligomers were separated from liposomes on a Sepharose 4B column (the encapsulation efficiency of oligomers in liposome-protein A was 0.8%). The addition of various concentrations of EGF to E+P showed an interaction between them during DNA synthesis (P<0.05). Antisense oligomers (1 microM) decreased DNA synthesis induced by E+P+EGF (65.0% inhibition, P<0.05). Sense oligomers also inhibited DNA synthesis induced by E+P+EGF (P<0.05). However, random-sequence oligomers did not inhibit EGF-induced DNA synthesis. We cannot rule out the possibility that sense oligomers match an unknown functional gene mRNA involved in cell growth, which causes their inhibitory effect. Cells were incubated with a keratin monoclonal antibody and then with dilutions of protein A-bound liposomes containing sense or antisense oligomers in the presence of E+P+EGF. Dose dependent inhibition of DNA synthesis was observed. The encapsulated oligomers in protein A-bound liposomes inhibited DNA synthesis at a 100-fold lower concentration than that of unencapsulated oligomers or the oligomer+liposome mixture. The tyrosine kinase activity domain has an important role in EGF regulation of mammary growth. The effect of a cytokeratin-targeted antibody on DNA synthesis in normal mouse mammary epithelial cells was marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号