首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain further information on gonadal function of the stallion, concentrations of testicular steroids in blood plasma (bpl) and seminal plasma (spl) and their distribution in the ejaculate were determined. Blood and semen samples from a total of 11 stallions were collected from November to July. Estrone (E1), estrone sulfate (E1S), estradiol-17beta (E2beta) and testosterone (T) were determined in bpl and spl, and in addition androstenedione (A), dehydroepiandrosterone (DHEA) and 5alpha-dihydrotestosterone (5alpha-DHT) were measured in spl. At certain points of time, aliquots of an ejaculate were centrifuged, washed and the distribution of E1, E1S, E2beta and T into seminal plasma and the sperm fraction was assessed. Hormone assay was by RIA, partly after prior separation by HPLC. Mean concentrations (X(g) x DF) were as follows: E2beta (bpl) 31.1 (1.16), (spl) 24.2 (1.42) pg ml(-1); E1 (bpl) 143.3 (1.21), (spl) 117.7 (1.53) pg ml(-1); E1S (bpl) 157.3 (1.44), (spl) 2.92 (1.42) ng ml(-1); T (bpl) 570.6 (1.43), (spl) 23.1 (1.68) pg ml(-1); A (spl) 17.9 (1.39) pg ml(-1); DHEH (spl) 12.4 (1.51) pg ml(-1); 5alpha-DHT (spl) 9.7 (1.29) pg ml(-1). Except for E2beta and A in seminal plasma, a seasonal pattern was established for all other steroids with lowest mean values occurring from November to April. From the semen parameters determined, only motility was correlated to season. There was a higher correlation among oestrogen in blp than in spl and the only correlation identified between oestrogenic and androgenic steroids was between T and E2beta in blp. In spl, T was correlated with A and 5alpha-DHT. T was the dominant free steroid in bpl while it was E1 in spl; T and E1S concentrations were about 23- and 54-fold lower in spl compared to bpl with E1S, however, showing the highest absolute values in both fluids. In the fractionated ejaculate an association of free oestrogens, particularly E2beta, with spermatozoa was observed.  相似文献   

2.
PGF2alpha in semen has been shown to induce uterine contractions, thereby, facilitating sperm transport during fertilization. Previously, we demonstrated that extended boar semen used in artificial insemination does not increase myometrial contractility, but PGF2alpha supplementation did. In this study, we determined the concentrations of endogenous PGF2alpha in pre-sperm and sperm-rich fractions of the boar ejaculate and examined whether changes in the concentration of exogenous PGF2alpha occurred when added to extended boar semen after 72-h incubation at a 17 degrees C storage temperature. Concentrations of endogenous PGF2alpha (n = 10 boars) in pre-sperm and sperm-rich fractions were 69.6 +/- 7.6 and 58.9 +/- 4.4 pg/ml, respectively. No differences were observed in the concentrations of exogenous PGF2alpha in the extended boar semen at 0 h (59.3 +/- 3.3 microg/ml) and after a 72-h incubation period (52.0 +/- 2.1 microg/ml). These results suggest that the concentration of endogenous PGF2alpha in boar semen used for artificial insemination is < 100 pg/ml. The concentration of exogenous PGF2alpha in the extended boar semen did not differ after 72 h, which indicates that it is not metabolized during this period of time.  相似文献   

3.
The peripheral blood plasma concentration of estrone, progesterone and 15-keto-13, 14-dihydroprostaglandin F2alpha (PGF2alpha metabolite) were determined by radioimmunoassay techniques during the peripartal period in 5 buffalo cows belonging to a river type breed. Estrone levels started to increase from below 200 pg/ml about 15 days prior to parturition, and reached high concentrations (400-750 pg/ml) during the last 5 days of pregnancy. The estrone concentration decreased to baseline levels after delivery. The concentration of progesterone fluctuated between 800 and 2000 pg/ml until 15 days before calving and showed a gradual increase during the last 15 days of pregnancy. The progesterone levels declined abruptly on the day of calving and remained below 100 pg/ml for up to 60 days post-partum. Increased levels of the prostaglandin metabolite were recorded from 15 days prior to parturition with further increases occurring during the last 3 days of pregnancy. PGF2alpha metabolite levels declined gradually after parturition, reaching base line levels 15-20 days after calving.  相似文献   

4.
On day 17 postestrus or postmating, heifers were given intrauterine injections of saline (2 pregnant, 2 non-pregnant) or 200 micrograms PGF2 alpha (7 pregnant, 6 nonpregnant) through cannulae installed surgically into the uterine horn ipsilateral to the corpus luteum bearing ovary. Jugular blood samples were collected prior to the laparotomy at which the cannulae were installed during surgery, and for 90 min following the intrauterine injection. Plasma was assayed for progesterone and 13,14-dihydro-15-keto-PGF2 alpha (PGFM). Laparotomies were reopened to confirm proper cannula placement and to determine if blastocysts were present in mated heifers. Concentrations of PGFM were higher in pregnant compared to nonpregnant heifers during the presurgery (68 +/- 26 vs 24 +/- 26 pg/ml; P less than .025) and surgery (186 +/- 47 vs 65 +/- 17 pg/ml; P less than .05) periods. Pregnancy status did not alter the mean concentrations of PGFM (pregnant, 554 +/- 70 pg/ml; nonpregnant, 422 +/- 81 pg/ml) or the half-life of its decline in concentration (18 min) following intrauterine injection of PGF2 alpha. Pregnancy at 17 days in cattle does not appear to influence PGF2 alpha transport from the uterine lumen or its metabolism in the uterus or elsewhere in response to an acute intrauterine injection.  相似文献   

5.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

6.
Two experiments were conducted to examine the effect of estradiol-17beta (E(2)-17beta) on content of immunoreactive prostagladin F(2)alpha (PGF, ng) and total protein (TUP, mg) in uterine flushings, as well as concentrations of 13, 14-dihydro-15-keto-PGF(2)alpha (PGFM) in plasma (Pg/ml). In experiment 1, Holstein heifers were utilized in a single reversal trial in which either E(2)-17beta (3 mg in 2 ml saline/ethanol 50:50; n=5) or vehicle alone (n=6) were given intravenously on day 14 or 15 of the estrous cycle (Period 1) following an induced estrus (day of estrus = day 0). Treatment (Trt) groups were reversed in Period 2 (Day 14 or 15 of the second estrous cycle). Jugular venous plasma was obtained before treatment (Oh), and at 5, 6, and 9h posttreatment (PT). Uterine flushings were collected nonsurgically in vivo , per cervix, via Foley catheter at 6h PT (20 ml of .9% saline per uterine horn). E(2)-17beta did not significantly alter (E(2)-17beta vs vehicle; x(-) +/- S.E.M.) PGF (1674 +/- .11 +/- 338.39 vs 1889.91 +/- 400.24 ng; P> .10) or TUP (33.25 +/- 2.57 vs 39.16 +/- 3.04 mg; P > .10). However, E(2)-17beta increased (P < .05) plasma PGFM (E(2)-17beta vs vehicle) after treatment (0h, 113.2 vs 163.8; 5h, 312.5 vs 203.9; 6h, 324.5 vs 198.0; 9h, 323.2 vs 246.8, pg/ml). In experiment 2, crossbred beef cattle received comparable treatments of either E(2)-17beta (n=5) or vehicle (n=5) on day 14 or 15 postestrus. Jugular venous plasma was obtained at 0h PT, and at 6h PT. Uterine flushings (1.9% saline, 20 ml per uterine horn) and peripheral plasma were collected at slaughter. Estradiol-17beta increased PGF (30.07 +/- 5.94 vs 8.46 +/- 2.01 ng; P> <.05) in uterine flushings as well as PGFM in plasma (E(2)-17beta : 55.82 +/- 19.13 pg/ml, at 0h and 89.31 +/- 14.02 pg/ml, at 6h, vs saline: 103.46 +/- 50.73 pg/ml, at 0h and 17.78 +/- 14.22, at 6h). Estradiol-17beta stimulated uterine production and release of PGF and protein as measured in flushings (experiment 2) as well as plasma PGFM responses (experiments 1 and 2). Uterine and/or cervical stimulation of experiment 1 may have masked uterine response to E(2)-17beta.  相似文献   

7.
We measured with radioimmunoassay the beta-endorphin-like and alpha-MSH-like immunoreactivities in milk and plasma of 8 lactating women. Mean beta-endorphin concentrations ( +/- SD) were 16.6 +/- 6.7 fmol/ml in milk and 9.9 +/- 4.1 fmol/ml in plasma. alpha-MSH concentrations (mean +/- SD) were 39.4 +/- 15.5 pg/ml in milk and 18.2 +/- 8.4 pg/ml in plasma. The concentrations of both peptides in milk were significantly (p less than 0.05) higher than in plasma. No significant correlation between milk and plasma concentrations of these peptides was found.  相似文献   

8.
The effects of acute heat stress (HS) and oxytocin (OT) injection on plasma concentrations of PGF2alpha and OT were examined in cyclic (C; n = 15) and pregnant (P; n = 11) dairy heifers. On Day 17 of synchronized estrous cycles, animals were randomly assigned to either thermoneutral (TN; 20 degrees C, 20% RH) or HS (42 degrees C, 60% RH) chambers. The jugular vein of each heifer was cannulated and blood samples collected hourly for 4 h, then every 15 min for an additional 3 h. Oxytocin (100 IU) was injected (IV) 5 h after the start of blood collection. Plasma samples were assayed subsequently for concentrations of 13,14-dihydro-15-keto PGF2alpha (PGFM) and OT. During the 7-h experiment, body temperature of HS heifers reached 41.2 degrees C as compared to 38.5 degrees C in control heifers. Plasma concentrations of PGFM increased (P<0.05) and peaked 30 min after OT injection in C (890 pg/ml) and P (540 pg/ml) heifers. In C heifers, heat stress failed to alter PGFM concentrations either before or after OT injection. In the P group, PGFM concentrations following OT injection tended to be higher in HS heifers were further TN heifers (peak values of 690 vs. 410 pg/ml). Pregnant TN and HS heifers were further classified as responders or non-responders to OT challenge according to a cutoff value for PGFM of 193 pg/ml (overall mean of C heifers minus 1 SD). Five of six HS and one of five TN pregnant heifers were classified as responders (P<0.06). Oxytocin concentrations in plasma prior to injection of exogenous OT were not affected by HS or pregnancy status. It is concluded that in C heifers, acute HS in vivo does not cause any further rise in PGF2alpha secretion. However, in P heifers, HS appears to antagonize suppressive effects of the embryo on uterine secretion of PGF2alpha, as indicated by the larger proportion of P heifers responding to OT challenge.  相似文献   

9.
The theory of countercurrent vascular transfer of PGF2 alpha during luteolysis was examined. In the first experiment, pulmonary clearance of PGF2 alpha was determined to re-examine whether the total amount of PGF2 alpha was degraded in the lungs after one passage. Cardiac output was measured by the Fick method and PGF2 alpha by radio-immunoassay before and after vascular lung supply, using pulmonary catheterization and the interventional radiology method in ten anaesthetized ewes on day 16 of the oestrous cycle. Cardiac output remained stable (7156 +/- 439 ml min-1). Infusion of 5 iu oxytocin resulted in an increase in plasma PGF2 alpha concentrations at 30 min in the uterine vein and the pulmonary and femoral arteries (3811 +/- 806, 224 +/- 55 and 18 +/- 4 pg ml-1, respectively). The PGF2 alpha concentrations decreased exponentially and the half-time decreases were 27 (r = 0.99), 16 (r = 0.99) and 18 (r = 0.98) min, respectively. Pulmonary clearance of PGF2 alpha was estimated at 6338 +/- 451 ml min-1. In a second experiment, an arterio-arterial gradient of plasma PGF2 alpha concentrations was analysed between the proximal and distal segments of the ovarian artery to verify whether the total amount of PGF2 alpha flowing to the ovary was from the local venous-arterial countercurrent pathway. Surgical catheterization techniques were performed on 11 ewes on day 16 of the oestrous cycle. The ovarian arterial blood flow was measured by the implantable Doppler method (8 +/- 1 ml min-1). The maximum plasma PGF2 alpha concentrations in the femoral and distal ovarian arteries were 23 +/- 6 and 42 +/- 11 pg ml-1 (P < 0.05), respectively. Plasma PGF2 alpha decreased exponentially in the femoral artery and the half-time decrease was 26 min (r = 0.98), and in the distal ovarian artery close to the ovary PGF2 alpha decreased linearly and the half-time decrease was 108 min (r = 0.96). Consequently, the arterio-arterial diffusion gradient of PGF2 alpha concentrations was extended to 3 h. These experiments showed that the PGF2 alpha flow rate in the pulmonary artery was 42.275 +/- 10.793 micrograms per 150 min (n = 10) and the systemic arterial PGF2 alpha flow rate was 5.359 +/- 1.658 micrograms per 150 min (n = 10). Therefore, 12% of the PGF2 alpha was not oxidized by the lungs. The proximal ovarian PGF2 alpha flow rate was 6.909 +/- 2.341 ng per 150 min, while the distal flow rate was 21.003 +/- 5.703 ng per 150 min (n = 11). Thus, 33% of the PGF2 alpha was transported rapidly to the ovary via the systemic route, while 67% was transported by slow local countercurrent diffusion, which extended the duration of luteolytic activity to four times that of the PGF2 alpha surge. These results indicate both rapid systemic transport of PGF2 alpha to the ovaries and a slower buffer mechanism involving a local diffusion pathway, rather than a direct countercurrent system.  相似文献   

10.
W Schlegel  J Meyer 《Prostaglandins》1986,31(4):735-744
The contents of prostaglandins in seminal plasma from a total of 73 men were evaluated. The subjects were grouped as follows: normospermic men, patients with impaired motility, patients with small untreated varicocele and patients with impaired motility and Kallikrein therapy. Sperm density, morphology and motility were examined. High performance reversed phase liquid chromatography (HPLC) in combination with specific radioimmunoassays were used for the determination of PGE2, PGI2 and PGF2 alpha. There was a significant difference (p less than 0.025; F-test) between the PGI2 concentrations in patients with impaired motility (5.6 +/- 1.4 pg/mg protein) and normal men (8.8 +/- 3.7 pg/mg protein). PGE2 and PGF2 alpha were significantly different in patients with varicocele (p less than 0.025, F-test). Wide ranges of prostaglandins occurred in the Kallikrein-group with no significant differences. We conclude that: a) PGI2 is an additional prostaglandin compound in seminal plasma, b) its measurement may not be useful as diagnostic parameter in subfertile men and c) Kallikrein has no influence on the prostaglandin content in seminal plasma and other seminal parameters as motility, motility index and sperm counts.  相似文献   

11.
Prostaglandin F(2alpha) (PGF(2alpha)) plays a role in the regression of the corpus luteum (CL) in a number of placental mammals. However, the mechanism of luteal regression has not been extensively studied in marsupials. The objectives of this study were to characterize changes in concentrations of PGF(2alpha) within utero-ovarian (UO) tissue/venous plasma during the luteal phase of the estrous cycle in Virginia opossums, to correlate these changes with those of plasma progesterone (P(4)), and to characterize the peripheral pattern of 13,14-dihydro-15-keto-PGF(2alpha) (PGFM) in parturient opossums. Ovaries, uteri, UO venous plasma and peripheral plasma were collected on Days 5, 9 and 12 after induced ovulation (n = 3 to 4 opossums/group). In addition, concentrations of PGFM were measured in peripheral plasma collected from two opossums during late gestation (Days 7,9,11 and 12) and at parturition (Day 13). Concentrations of P(4), PGFM and PGF(2alpha) in tissue homogenates and plasma samples were estimated by radioimmunoassay. In nonpregnant opossums, peripheral P(4) levels were highest on Day 5 (38.8 +/- 11.1 ng/ml, x +/- SEM) declined on Day 9 (22.6 +/- 7.4 ng/ml), and were at basal levels by Day 12 (2.4 +/- 0.7 ng/ml). Endometrial concentrations of PGF(2alpha) increased (P = 0.056) from Day 5 (15.7 +/- 4.1 ng/g) to Day 9 (92.1 +/- 61.0 ng/g) and were maintained to Day 12 (97.2 +/- 25.7 ng/g). Prostaglandin F(2alpha) concentrations in UO plasma increased (P < 0.01) from Day 5 (143.1 +/- 32.7 pg/ml) to Day 12 (333.0 +/- 32.4 pg/ml). Prostaglandin F(2alpha) concentrations in ovarian tissue followed a similar pattern and were correlated with UO concentrations (r = 0.708, P < 0.05). In pregnant opossums, the highest levels of peripheral PGFM were recorded in the peripartum period, when luteal regression would also be expected to occur. The negative temporal relationship between peripheral concentrations of P(4) and concentrations of PGF(2alpha) in UO tissue/venous plasma observed in this preliminary study is consistent with the notion that PGF(2alpha) from the ovary and/or uterus may play a role in CL regression in the opossum.  相似文献   

12.
The purpose of the experiment was to obtain preparatory information about the presence of prostaglandins in semen collected from various types of horses after different periods of sexual rest. Semen was collected with an artificial vagina. Prostaglandin-like activity was estimated by the bioassay procedure described by Vane (1). Results are expressed in ng/ml PGE(2) of seminal plasma. The total concentration of prostaglandins in the full ejaculate averaged 43.73 +/- 4.93 ng/ml of plasma while the total amount of prostaglandins in the ejaculate was 1076 ng. Taking into consideration the period of sexual rest in the stallion, statistically significant differences were found in the prostaglandin level in the semen of all the stallions.  相似文献   

13.
Concentrations of progesterone and of 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM) were measured in plasma collected from 6 bitches every 3 h starting 2.8-4.6 days before parturition (birth of first pup) and continuing until 0.4-0.8 days post partum, and in additional samples collected less frequently. Progesterone concentrations at 48, 24, 12 and 3 h pre partum averaged 2.8 +/- 0.3, 2.2 +/- 0.4, 1.0 +/- 0.3 and 0.7 +/- 0.2 ng/ml. At those times PGFM values averaged 380 +/- 80, 800 +/- 220, 1450 +/- 450 and 1930 +/- 580 pg/ml, respectively. Mean concentrations of PGFM increased about 2.5-fold between 48 and 15 h pre partum in association with the onset of luteolysis, and then increased another 2.5 times before parturition as progesterone fell to nadir values. Peak levels of PGFM ranged from 1060 to 7150 pg/ml (2100 +/- 600 pg/ml) and occurred within 1-9 h after the birth of the first pup and before the birth of the last pup. These results suggest that prepartum luteolysis in dogs is initiated by increases in maternal concentrations of PGF, and that progesterone withdrawal causes a further increase in PGF which completes luteolysis and provides a major portion of the uterotonic activity causing expulsion of pups.  相似文献   

14.
Oxytocin receptors were measured in myometrium and intercaruncular endometrium of cows during pregnancy and parturition. Concentrations of estradiol-17 beta, estrone, and progesterone in peripheral blood were also measured. Receptor concentrations in the endometrium rose almost 200-fold from Day 20 to term (p < 0.0001, ANOVA), from 40 +/- 11 to 7300 +/- 1430 fmol/mg protein. Myometrial receptor concentrations increased 10-fold from 180 +/- 36 fmol/mg on Day 20 to 1850 +/- 360 fmol/mg protein at term (p < 0.0001, ANOVA). During labor, endometrial receptors (6600 +/- 1300 fmol/mg) remained at prelabor values, whereas myometrial receptor concentrations had decreased to 1190 +/- 316 fmol/mg (not significant) and declined further postpartum. Plasma concentrations of progesterone declined from 4-5 ng/ml to about 2 ng/ml between Days 250 and 282 and dropped to < 0.2 ng/ml shortly before delivery. Plasma concentrations of estrone and estradiol-17 beta were below 10-20 pg/ml until Day 230. Estrone concentrations were significantly (p < 0.05) increased by Day 250 and estradiol-17 beta by Day 270, and then both rose rapidly. During labor, plasma estrone was 1135 +/- 245 pg/ml and plasma estradiol-17 beta was 226 +/- 131 pg/ml. The molar ratio of estrone and estradiol-17 beta to progesterone rose from less than 0.01 to 4.4 during labor, and was correlated with oxytocin receptor concentrations in endometrium (r = 0.5160, p < 0.001), but not those in myometrium (r = 0.0122). The regulation of oxytocin receptors by ovarian hormones in the two tissues may therefore differ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Circulating levels (mean +/- SD) of estrone sulfate (E1S), estrone (E1) and estradiol-17 beta (E2) were measured in normal and cirrhotic postmenopausal women matched for body weight and age. In cirrhotic postmenopausal women, the E1S concentrations (201 +/- 46 pg/ml), while both E1 and E2 levels showed an increase (46 +/- 7 and 30 +/- 8 pg/ml) compared to control subjects (32 +/- 6 and 18 +/- 7 pg/ml). These data suggest that the liver plays an important role on the control of estrogen sulfation.  相似文献   

16.
In order to evaluate the possible role of prostaglandins in pituitary prolactin (PRL) secretion, PRL was serially measured following perphenazine (Trilafon) ingestion in 8 men before and after 5 days of indomethacin administration. Since estrogens have been shown to modulate prolactin secretion in man, serum steroids including estrone (E1), estradiol (E2), progesterone (P) and testosterone (T) were measured before and after indomethacin ingestion. Serum E1, P and T levels were similar during the pre- and post-indomethacin study periods: 56 +/- 4 (1 SEM) vs 48 +/- 5 pg/ml, 298 +/- 28 vs 315 +/- 32 pg/ml, and 8.1 +/- 0.7 vs 8.6 +/- 0.7 ng/ml, respectively. Serum E2 levels were slightly, but significantly, lower following indomethacin treatment at 30 +/- 3 vs 37 +/- 3 pg/ml (p less than .01). Basal serum PRL concentrations were unaffected by indomethacin administration (9 +/- 3 pre- vs 8 +/- 2 ng/ml post-drug treatment). Integrated perphenazine-induced PRL responses were likewise similar during the 2 study periods: 101 +/- 16 ng . hr/ml during the control period and 104 +/- 14 ng . hr/ml following indomethacin. Thus, short-term indomethacin treatment had no effect on basal or perphenazine-stimulated PRL secretion in men.  相似文献   

17.
To test the hypothesis that estrogens alter insulin action, we evaluated the effects of intravenous conjugated estrogens (CE) on insulin-stimulated steady-state glucose infusion rate (SSGIR) and suppression of plasma glycerol in postmenopausal women (mean +/- SD; 56 +/- 4 yr; n = 12) not using hormone replacement. SSGIR and glycerol were measured during a two-stage (8 and 40 mU. m-2. min-1) hyperinsulinemic euglycemic clamp on 2 days, with or without a 2.5-mg intravenous CE bolus. Serum estradiol concentrations were increased approximately 200% on the estrogen (EST) compared with the control (CON) days. Serum insulin was reduced (P < 0.01) during stage 2 of the clamp for EST (63.3 +/- 12.8 micro U/ml) vs. CON (78.2 +/- 15.8 micro U/ml). Mean SSGIR and plasma glycerol did not differ between CON and EST days. With adjustment for differences in insulin concentration between conditions, stage 2 glucose disposals were significantly higher (8.63 vs. 7.20 mg. kg-1. min-1) and plasma glycerol concentrations were significantly lower (29.4 vs. 35.0 micro mol/l) for EST vs. CON. Our findings suggest that acute CE administration increases insulin clearance and action in postmenopausal women.  相似文献   

18.
To determine whether lung injury causes increased plasma prostaglandin (PG) levels, 35 rabbits received oleic acid and 35 served as controls. Half of each group also received 4 ml/kg of Intralipid over one hour and at least five in each subgroup received indomethacin 7.5 mg/kg. Arterial and venous plasma concentrations of PGE2, 6-keto-PGF1 alpha, and PGF2 alpha-M were measured. Venous PGE2 was significantly higher in the oleic acid-injured than in the normal lung group, 1560 +/- 270 (Mean +/- SEM) versus 880 +/- 140 pg/ml (p less than .05). Plasma levels were reduced by 50% with indomethacin, but PGE2 levels remained significantly higher than in the normal lung group, 850 +/- 180 versus 480 +/- 60 for arterial (p less than .05) and 820 +/- 140 versus 480 +/- 80 for venous (p less than .05), respectively. PGF2 alpha-M levels were significantly higher in the lung injury group, 240 +/- 50 versus 50 +/- 40 pg/ml for arterial (p less than .05) and 220 +/- 50 versus 95 +/- 40 for venous (p less than .05), respectively. These lung injury-related increases in PGE2 and PGF2 alpha-M appear related both to increased pulmonary production and to decreased pulmonary clearance. With Intralipid infusion, however, arterial PGE2 increased by 500 +/- 260 pg/ml compared to baseline (p less than .05) with no change in venous PGE2, indicating in this instance that the increase in arterial PGE2 levels is related to increased pulmonary production.  相似文献   

19.
To determine whether progesterone facilitates PGF(2)alpha-induced luteolysis prior to day 5 of the estrous cycle, 48 Holstein-Friestian heifers were assigned at random to four treatments: 1) 4 ml corn oil/day + 5 ml Tris-HCl buffer (control); 2) 25 mg prostaglandin F(2)alpha (PGF(2)alpha); 3) 100 mg progesterone/day (progesterone); 4) 100 mg progesterone/day + 25 mg PGF(2)alpha (combined treatment). Progesterone was injected subcutaneously daily from estrus (day 0) through day 3. The PGF(2)alpha was injected intramuscularly on day 3. Estrous cycle lengths were decreased by progesterone: 20.2 +/- 0.56, 19.2 +/- 0.31 (control and PGF(2)alpha); 13.2 +/- 1.40, and 11.7 +/- 1.27 (progesterone and combined). The combination of progesterone and PGF(2)alpha did not shorten the cycle any more than did progesterone alone (interaction, P>0.05). PGF(2)alpha treatment reduced progesterone concentrations on day 6 (P<0.05) and both progesterone and PGF(2)alpha reduced plasma progesterone on day 8 (P<0.01 and P<0.05, respectively). LH was measured in blood samples collected at 10- min intervals for 4 hr on day 4 from three heifers selected at random from each of the four treatment groups. Mean LH concentration for control heifers ranged from 0.35 to 0.63 ng/ml (overall mean, 0.49 ng/ml) and for progesterone-treated heifers ranged from 0.12 to 0.30 ng/ml (overall mean, 0.23 ng/ml). LH concentrations were greater in control heifers (P<0.01). The mean LH pulse rate for control heifers was 2.7 pulses/heifers/4 hr, while that for the progesterone-treated heifers was 1.7 pulses/heifer/4 hr. The mean pulse amplitude for control and progesterone treatments was 0.47 ng/ml and 0.36 ng/ml, respectively. Neither pulse amplitude nor frequency were different between treatment groups.  相似文献   

20.
A total of 101 sows was used to examine postpartum progesterone levels and litter performance following administration of 15 mg prostaglandins F(2alpha) (PGF(2alpha) n = 48) given within 12 h after farrowing. Daily blood samples and rectal temperatures were taken from all sows during the first 3 d post partum. Plasma progesterone (P(4)) concentrations were determined by radioimmunoassay (RIA). Regardless of treatment, plasma P(4) levels for all sows decreased in a similar fashion over the 3 d sampled. Mean (+/- SEM) P(4) on Day 2 (0.55 +/- 0.06 ng/ml) and Day 3 (0.38 +/- 0.04 ng/ml) were lower (P<0.01) than on Day 1 (0.98 +/- 0.08 ng/ml). Rectal temperature did not differ between PGF(2alpha) treated and nontreated sows nor was it different over the days measured. Litter characteristics, including survival rates on Day 7 and at weaning, and body weight on Days 3 and 35, were not affected by treatment. It was concluded that PGF(2alpha) administration to sows within 12 h post farrowing had no affect on the rate of luteal regression, as determined by P(4) concentration, nor on subsequent litter performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号