首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Background information. The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe ( 2004 ) Cell Struct. Funct. 29 , 85–90]. Results. In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295‐amino‐acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn‐Pro‐Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti‐ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V‐ATPase (vacuolar H+‐ATPase) on the vesicle membrane around the CV was also detected. Conclusions. Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V‐ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.  相似文献   

2.
Annotation of the recently sequenced genome of the pea aphid (Acyrthosiphon pisum) identified a gene ApAQP2 (ACYPI009194, Gene ID: 100168499) with homology to the Major Intrinsic Protein/aquaporin superfamily of membrane channel proteins. Phylogenetic analysis suggests that ApAQP2 is a member of an insect-specific clade of this superfamily. Homology model structures of ApAQP2 showed a novel array of amino acids comprising the substrate selectivity-determining "aromatic/arginine" region of the putative transport pore. Subsequent characterization of the transport properties of ApAQP2 upon expression in Xenopus oocytes supports an unusual substrate selectivity profile. Water permeability analyses show that the ApAQP2 protein exhibits a robust mercury-insensitive aquaporin activity. However unlike the water-specific ApAQP1 protein, ApAQP2 forms a multifunctional transport channel that shows a wide permeability profile to a range of linear polyols, including the potentially biologically relevant substrates glycerol, mannitol and sorbitol. Gene expression analysis indicates that ApAQP2 is highly expressed in the insect bacteriocytes (cells bearing the symbiotic bacteria Buchnera) and the fat body. Overall the results demonstrate that ApAQP2 is a novel insect aquaglyceroporin which may be involved in water and polyol transport in support of the Buchnera symbiosis and aphid osmoregulation.  相似文献   

3.
Water permeability and characterization of aquaporin-11   总被引:1,自引:0,他引:1  
The water permeability of aquaporin-11 (AQP11), which has a cysteine substituted for an alanine at a highly conserved asparagine-proline-alanine (NPA) motif in the water channel family, is controversial. Our previous study, however, showed that AQP11 is water permeable in proteoliposomes in which AQP11 molecules were reconstituted after purification with Fos-choline 10, which is the most suitable detergent available for stable solubilization of AQP11. In our previous study, we were unable to exclude the effect of the detergent on the water conductance. Therefore, in the present study, we measured the water permeability of AQP11 without detergent using vesicles that directly formed from Sf9 cell membranes expressing AQP11 molecules. The water permeability of AQP11 was 8-fold lower than that of AQP1 and 3-fold higher than that of mock-infected cell membrane, and was reversibly inhibited by mercury ions. Considering the slow but constant water permeable functions of AQP11, we performed homology modeling to search for a common structural feature. When comparing our model with those of other AQP structures, we found that Tyr83 facing the channel pore might be a key amino acid residue that decreases the water permeation of AQP11. Our findings indicate that AQP11 could be involved in slow but constant water movement across the membrane.  相似文献   

4.
We previously found that water transport across hepatocyte plasma membranes occurs mainly via a non-channel mediated pathway. Recently, it has been reported that mRNA for the water channel, aquaporin-8 (AQP8), is present in hepatocytes. To further explore this issue, we studied protein expression, subcellular localization, and regulation of AQP8 in rat hepatocytes. By subcellular fractionation and immunoblot analysis, we detected an N-glycosylated band of approximately 34 kDa corresponding to AQP8 in hepatocyte plasma and intracellular microsomal membranes. Confocal immunofluorescence microscopy for AQP8 in cultured hepatocytes showed a predominant intracellular vesicular localization. Dibutyryl cAMP (Bt(2)cAMP) stimulated the redistribution of AQP8 to plasma membranes. Bt(2)cAMP also significantly increased hepatocyte membrane water permeability, an effect that was prevented by the water channel blocker dimethyl sulfoxide. The microtubule blocker colchicine but not its inactive analog lumicolchicine inhibited the Bt(2)cAMP effect on both AQP8 redistribution to cell surface and hepatocyte membrane water permeability. Our data suggest that in rat hepatocytes AQP8 is localized largely in intracellular vesicles and can be redistributed to plasma membranes via a microtubule-depending, cAMP-stimulated mechanism. These studies also suggest that aquaporins contribute to water transport in cAMP-stimulated hepatocytes, a process that could be relevant to regulated hepatocyte bile secretion.  相似文献   

5.
6.
Arginine vasopressin (AVP) increases the water permeability of renal collecting duct principal cells by inducing the fusion of vesicles containing the water channel aquaporin-2 (AQP2) with the plasma membrane (AQP2 shuttle). This event is initiated by activation of vasopressin V2 receptors, followed by an elevation of cAMP and the activation of protein kinase A (PKA). The tethering of PKA to subcellular compartments by protein kinase A anchoring proteins (AKAPs) is a prerequisite for the AQP2 shuttle. During the search for AKAP(s) involved in the shuttle, a new splice variant of AKAP18, AKAP18delta, was identified. AKAP18delta functions as an AKAP in vitro and in vivo. In the kidney, it is mainly expressed in principal cells of the inner medullary collecting duct, closely resembling the distribution of AQP2. It is present in both the soluble and particulate fractions derived from renal inner medullary tissue. Within the particulate fraction, AKAP18delta was identified on the same intracellular vesicles as AQP2 and PKA. AVP not only recruited AQP2, but also AKAP18delta to the plasma membrane. The elevation of cAMP caused the dissociation of AKAP18delta and PKA. The data suggest that AKAP18delta is involved in the AQP2 shuttle.  相似文献   

7.
Vasopressin acts on renal collecting duct cells to stimulate translocation of aquaporin-2 (AQP2)-containing membrane vesicles from throughout the cytoplasm to the apical region. The vesicles fuse with the plasma membrane to increase water permeability. To identify the intracellular membrane compartments that contain AQP2, we carried out LC-MS/MS-based proteomic analysis of immunoisolated AQP2-containing intracellular vesicles from rat inner medullary collecting duct. Immunogold electron microscopy and immunoblotting confirmed heavy AQP2 labeling of immunoisolated vesicles. Vesicle proteins were separated by SDS-PAGE followed by in-gel trypsin digestion in consecutive gel slices and identification by LC-MS/MS. Identification of Rab GTPases 4, 5, 18, and 21 (associated with early endosomes); Rab7 (late endosomes); and Rab11 and Rab25 (recycling endosomes) indicate that a substantial fraction of intracellular AQP2 is present in endosomal compartments. In addition, several endosome-associated SNARE proteins were identified including syntaxin-7, syntaxin-12, syntaxin-13, Vti1a, vesicle-associated membrane protein 2, and vesicle-associated membrane protein 3. Rab3 was not found, however, either by mass spectrometry or immunoblotting, suggesting a relative lack of AQP2 in secretory vesicles. Additionally, we identified markers of the trans-Golgi network, components of the exocyst complex, and several motor proteins including myosin 1C, non-muscle myosins IIA and IIB, myosin VI, and myosin IXB. Beyond this, identification of multiple endoplasmic reticulum-resident proteins and ribosomal proteins indicated that a substantial fraction of intracellular AQP2 is present in rough endoplasmic reticulum. These results show that AQP2-containing vesicles are heterogeneous and that intracellular AQP2 resides chiefly in endosomes, trans-Golgi network, and rough endoplasmic reticulum.  相似文献   

8.
Both the acinar and ductal cells of the pancreas secrete a near-isotonic fluid and may thus be sites of aquaporin (AQP) water channel expression. Northern blot analysis of mRNA from whole rat pancreas revealed high levels of AQP1 and AQP8 expression, whereas lower levels of AQP4 and AQP5 expression were just detectable by RT-PCR Southern blot analysis. Immunohistochemistry showed that AQP1 is localized in the microvasculature, whereas AQP8 is confined to the apical pole of the acinar cells. No labeling of acinar, ductal, or vascular tissue was detected with antibodies to AQP2-7. With immunoelectron microscopy, AQP8 labeling was observed not only at the apical membrane of the acinar cells but also among small intracellular vesicles in the subapical cytoplasm, suggesting that there may be regulated trafficking of AQP8 to the apical plasma membrane. To evaluate the contribution of AQPs to the membrane water permeability, video microscopy was used to measure the swelling of acinar cells in response to hypotonic stress. Osmotic water permeability was reduced by 90% following exposure to Hg(2+). Since AQP8 is confined to the apical membrane, the marked effect of Hg(2+) suggests that other water channels may be expressed in the basolateral membrane.  相似文献   

9.
A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle   总被引:4,自引:0,他引:4  
Arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells. Its binding to Gs-coupled vasopressin V2 receptors increases cyclic AMP (cAMP) and subsequently elicits the redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane (AQP2 shuttle), thereby facilitating water reabsorption from primary urine. The AQP2 shuttle is a paradigm for cAMP-dependent exocytic processes. Using sections of rat kidney, the AQP2-expressing cell line CD8, and primary principal cells, we studied the role of the motor protein myosin Vb, its vesicular receptor Rab11, and the myosin Vb- and Rab11-binding protein Rab11-FIP2 in the AQP2 shuttle. Myosin Vb colocalized with AQP2 intracellularly in resting and at the plasma membrane in AVP-treated cells. Rab11 was found on AQP2-bearing vesicles. A dominant-negative myosin Vb tail construct and Rab11-FIP2 lacking the C2 domain (Rab11-FIP2-DeltaC2), which disrupt recycling, caused condensation of AQP2 in a Rab11-positive compartment and abolished the AQP2 shuttle. This effect was dependent on binding of myosin Vb tail and Rab11-FIP2-DeltaC2 to Rab11. In summary, we identified myosin Vb as a motor protein involved in AQP2 recycling and show that myosin Vb- and Rab11-FIP2-dependent recycling of AQP2 is an integral part of the AQP2 shuttle.  相似文献   

10.
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.  相似文献   

11.
Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like beta-barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [sij] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% alpha-helix) with little or no beta-sheet content. 2) The alpha-helices have a transmembrane orientation, but are more tilted (21 degrees or 27 degrees, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated alpha-helices that span the lipid membrane.  相似文献   

12.
BACKGROUND INFORMATION: PI3K (phosphoinositide 3-kinase) mediates several signal transduction pathways in hepatocytes, including some involved in the regulation of vesicle trafficking. Hepatocytes express the water channel AQP8 (aquaporin-8) predominantly in an intracellular location, and it redistributes to the canalicular membrane, upon stimulation with the hormone glucagon, by a cAMP/protein kinase A-dependent mechanism. Since glucagon is capable of stimulating PI3K activity in hepatocytes and a cross talk between cAMP and PI3K has been suggested, in the present study, we examine whether PI3K activation is involved in the glucagon-induced translocation of AQP8. RESULTS: By quantitative immunoblotting of purified hepatocyte plasma membranes, we found that the preincubation of cells with two structurally different PI3K inhibitors, wortmannin or LY294002, prevented the glucagon-induced translocation of AQP8 to hepatocyte plasma membrane. Confocal immunofluorescence microscopy in cultured hepatocytes confirmed the dependence of the hormone-induced redistribution of AQP8 on PI3K activity. Functional studies showed that the PI3K inhibitors were also capable of preventing the glucagon-induced increase in hepatocyte osmotic membrane water permeability. CONCLUSIONS: Our results suggest that PI3K activation is involved in the glucagon-dependent signal transduction pathways leading to hepatocyte AQP8 translocation.  相似文献   

13.
 Aquaporin 2 (AQP2) transfected into LLC-PK1 cells functions as a vasopressin-regulated water channel that recycles between intracellular vesicles and the plasma membrane upon vasopressin stimulation. The green fluorescent protein (GFP) of the jellyfish, Aequorea victoria, was used as an autofluorescent tag to monitor AQP2 trafficking in transfected LLC-PK1 cells. Two chimeras were constructed, one in which GFP was fused to the amino-terminus of AQP2 [GFP-AQP2(NT)] and the second in which it was fused to the carboxyl-terminus [AQP2-GFP(CT)]. The GFP-AQP2(NT) chimera trafficked in a regulated pathway from intracellular vesicles to the basolateral plasma membrane in response to vasopressin or forskolin stimulation of cells. In contrast, the AQP2-GFP(CT) chimera expressed in LLC-PK1 cells was localized constitutively on both apical and basolateral plasma membranes. The cellular location of this chimera was not modified by vasopressin or forskolin. Thus, while the GFP-AQP2(NT) chimera will be useful to study AQP2 trafficking in vitro, the abnormal, constitutive membrane localization of the AQP2-GFP(CT) chimera suggests that one or more trafficking signals exist on the carboxyl-terminus of the AQP2 protein. Accepted: 8 April 1998  相似文献   

14.
Aquaporin 2 (AQP2) is a small, integral tetrameric plasma membrane protein that is expressed in mammalian kidneys. The specific constitution of this protein and its selective permeability to water means that AQP2 plays an important role in hypertonic urine production. Immunolocalization of AQP2 has been studied in humans, monkeys, sheep, dogs, rabbits, rats, mice and adult cattle. We analyzed the expression of AQP2 in kidneys of 7-month-old Polish-Friesian var. black and white male calves. AQP2 was localized in the principal cells of collecting ducts in medullary rays penetrating the renal cortex and in the collecting ducts of renal medulla. AQP2 was expressed most strongly in the apical plasma membrane, but expression was observed also in the intracellular vesicles and basolateral plasma membrane. Our study provides new information concerning the immunolocalization of AQP2 in calf kidneys.  相似文献   

15.
Annexin A4 (Anx4) belongs to a ubiquitous family of Ca2+-dependent membrane-binding proteins thought to be involved in membrane trafficking and membrane organization within cells. Anx4 localizes to the apical region in epithelia; however, its physiological role is unclear. We show that Anx4 exhibited binding to liposomes (phosphatidylcholine:phosphatidylserine, 1:1) in the presence of Ca2+ and binding was reversible with EDTA. Anx4 binding resulted in liposome aggregation and a reduction in membrane water permeability of 29% (P < 0.001) at 25 degrees C. These effects were not seen in the presence of Ca2+ or Anx4 alone and were reversible with EDTA. Measurements of membrane fluidity made by monitoring fluorescence anisotropy of 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-HPC) demonstrated that Anx4 binding rigidified the outer leaflet of the bilayer (P < 0.001), thus providing a molecular explanation for the inhibition of water flux. To determine whether Anx4 would produce similar effects on physiological membranes we constructed liposomes which recapitulated the lipid composition of the inner leaflet of the MDCK apical membrane. These membranes exhibited reductions to water permeability upon Anx4 binding (19.5% at 25 degrees C, 31% at 37 degrees C; P < 0.01 and P < 0.001, respectively) and to proton permeability (15% at 25 degrees C, 19.5% at 37 degrees C; P < 0.05). Since our in vitro experiments indicated an effect on membrane permeability, we examined localization of Anx4 in the kidney collecting duct, a region of the nephron responsible for concentrating urine through water reabsorbtion. Anx4 was shown to colocalize apically with aquaporin 2 (AQP2) in collecting duct epithelia. To test for the existence of a functional interaction between Anx4 and AQP2 we isolated AQP2-containing endosomes and exposed them to Anx4/Ca2+. Water flux rates were unchanged, indicating Anx4 does not directly regulate AQP2. We conclude that Anx4 can alter the physical properties of membranes by associating with them and regulate passive membrane permeability to water and protons. These properties represent important new functions for Anx4.  相似文献   

16.
Vasopressin-regulated water reabsorption through the water channel aquaporin-2 (AQP2) in renal collecting ducts maintains body water homeostasis. Vasopressin activates PKA, which phosphorylates AQP2, and this phosphorylation event is required to increase the water permeability and water reabsorption of the collecting duct cells. It has been established that the phosphorylation of AQP2 induces its apical membrane insertion, rendering the cell water-permeable. However, whether this phosphorylation regulates the water permeability of this channel still remains unclear. To clarify the role of AQP2 phosphorylation in water permeability, we expressed recombinant human AQP2 in Escherichia coli, purified it, and reconstituted it into proteoliposomes. AQP2 proteins not reconstituted into liposomes were removed by fractionating on density step gradients. AQP2-reconstituted liposomes were then extruded through polycarbonate filters to obtain unilamellar vesicles. PKA phosphorylation significantly increased the osmotic water permeability of AQP2-reconstituted liposomes. We then examined the roles of AQP2 phosphorylation at Ser-256 and Ser-261 in the regulation of water permeability using phosphorylation mutants reconstituted into proteoliposomes. The water permeability of the non-phosphorylation-mimicking mutant S256A-AQP2 and non-phosphorylated WT-AQP2 was similar, and that of the phosphorylation-mimicking mutant S256D-AQP2 and phosphorylated WT-AQP2 was similar. The water permeability of S261A-AQP2 and S261D-AQP2 was similar to that of non-phosphorylated WT-AQP2. This study shows that PKA phosphorylation of AQP2 at Ser-256 enhances its water permeability.  相似文献   

17.
Aquaporin (AQP) family plays a fundamental role in transmembrane water and small solutes movement. Within this family, aquaporin 8 (AQP8), showed to be widely distributed in the digestive system especially colon. To investigate the possible protein alterations involved in AQP8 regulation and trafficking, we extensively compared between wild type and AQP8 knockout mouse colon using semi-quantitative fluorescence- stained two dimensional gel electrophoresis (2-DE) coupled with nano LC-Ms/Ms. Our analysis revealed identification and regulation of 21 proteins, most notably, actin-related family which suggests its possible involvement in regulating AQP8 secretory vesicles migration to be integrated as a cell membrane protein.  相似文献   

18.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (Cat Fr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

19.
BACKGROUND INFORMATION: Most AQPs (aquaporins) function at the plasma membrane, however AQP6 is exclusively localized to membranes of intracellular vesicles in acid-secreting type-A intercalated cells of renal collecting ducts. The intracellular distribution indicates that AQP6 has a function distinct from trans-epithelial water movement. RESULTS: We show by mutational analyses and immunofluorescence that the N-terminus of AQP6 is a determinant for its intracellular localization. Presence or absence at the plasma membrane of AQP6 constructs was confirmed by electrophysiological methods. Addition of a GFP (green fluorescent protein) or a HA (haemagglutinin) epitope tag (GFP-AQP6 or HA-AQP6) to the N-terminus of AQP6, directed AQP6 to the plasma membranes of transfected Madin-Darby canine kidney cells. In contrast, addition of a GFP tag to the C-terminus (AQP6-GFP) caused the protein to remain intracellular, similar to untagged wild-type AQP6. Replacement of the N-terminus of AQP6 by that of AQP1 also directed AQP6 to the plasma membranes, whereas the N-terminus of AQP6 retained AQP1 in cytosolic sites. CONCLUSION: Our results suggest that the N-terminus of AQP6 is critical for trafficking of the protein to the intracellular sites. Moreover, our studies provide an approach for future identification of proteins involved in vesicle sorting in the acid-secreting type-A intercalated cells.  相似文献   

20.
BACKGROUND INFORMATION: We have previously showed that: (i) cholangiocytes contain AQP1 (aquaporin 1) water channels sequestered in intracellular vesicles; and (ii) upon stimulation with choleretic agonists such as secretin or dibutyryl-cAMP (dbcAMP), the AQP1 vesicles move via microtubules to the apical cholangiocyte membrane to facilitate osmotically driven, passive water movement (i.e. ductal bile secretion). The aim of the present study was to determine which proteins and mechanisms regulate AQP1 trafficking in cholangiocytes. RESULTS: Using polarized cultured NMCs (normal mouse cholangiocytes) or NRCs (normal rat cholangiocytes) and affinity-purified antibodies, we performed immunofluorescent confocal microscopy on fixed cells or immunoblotting on cell lysates for actin, tubulin, kinesin and dynein, proteins known to regulate intracellular vesicle trafficking. By immunostaining, the appropriate orientation of the actin (i.e. sub-apical) and tubulin (i.e. generalized) cytoskeleton was apparent; kinesin and dynein displayed a homogeneous punctate distribution. Immunoblotting showed kinesin and dynein to be present in both cholangiocyte lysates and in isolated AQP1-containing vesicles. We utilized real-time fluorescence confocal microscopy of NMCs transfected with a GFP (green fluorescent protein)-AQP1 fusion construct in the presence and absence of dbcAMP. CONCLUSIONS: Our results provide additional insights into the potential molecular mechanisms of ductal bile secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号