首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Ultrastructural localization of peroxidatic activity was investigated in the chytrid Entophlyctis variabilis with the 3,3-diaminobenzidine (DAB) cytochemical prodedure. The subcellular distribution of reaction product varied with changes in pH of the DAB medium and with the developmental stage of the fungus. Incubations in the DAB reaction medium at pH 9.2 produced an electron dense reaction product within single membrane bounded organelles which resembled microbodies but which varied in shapes from elongate to oval. At this pH the cell wall also stained darkly. When the pH of the DAB medium was lowered to pH 8.2 or 7.0, DAB oxidation product was localized within mitochondrial cristae as well as in microbodies and zoosporangial walls. As soon as zoospores were completely cleaved out of the zoosporangial cytoplasm, endoplasmic reticulum (ER) also stained. When the wall appeared around the encysted zoospore, ER staining was no longer found. The influence of the catalase inhibitor, aminotriazole, and the inhibitors of heme enzymes, sodium azide and sodium cyanide, on the staining patterns within cells incubated in the DAB media indicates that microbody staining is due to both catalase and peroxidase, mitochondrial staining is due to cytochrome c, and ER staining is due to peroxidase.Abbreviations DAB 3,3-diaminobenzidine-HCl - ER endoplasmic reticulum  相似文献   

2.
Structural changes in endosperm cells of germinating castor beans were examined and complemented with a cytochemical analysis of staining with diaminobenzidine (DAB). Deposition of oxidized DAB occurred only in microbodies due to the presence of catalase, and in cell walls associated with peroxidase activity. Seedling development paralleled the disappearance of spherosomes (lipid bodies) and matrix of aleurone grains in endosperm cells. 6 to 7 days after germination, a cross-section through the endosperm contained cells in all stages of development and senescence beginning at the seed coat and progressing inward to the cotyledons. Part of this aging process involved vacuole formation by fusion of aleurone grain membranes. This coincided with an increase in microbodies (glyoxsomes), mitochondria, plastids with an elaborate tubular network, and the formation of a new protein body referred to as a dilated cisterna, which is structurally and biochemically distinct from microbodies although both apparently develop from rough endoplasmic reticulum (ER). In vacuolate cells microbodies are the most numerous organelle and are intimately associated with spherosomes and dilated cisternae. This phenomenon is discussed in relation to the biochemical activities of these organelles. Turnover of microbodies involves sequestration into autophagic vacuoles as intact organelles which still retain catalase activity. Crystalloids present in microbodies develop by condensation of matrix protein and are the principal site of catalase formerly in the matrix.  相似文献   

3.
H. Lehmann  D. Schulz 《Planta》1969,85(4):313-325
Summary In meristematic cells of the gemma of Riella helicophylla and in young bud cells from the protonema of Funaria hygrometrica the cell plate is formed by fusion of small vesicles originating from the Golgi apparatus. These spherical vesicles of about 0.1 m diameter have an electron dense centre, probably consisting of pectic substances or their precursors. The endoplasmic reticulum producing multivesicular bodies participate in cell plate formation too. Another cytoplasmic component forming the cell plate are coated vesicles, the origin of which is the Golgi apparatus and perhaps also the endoplasmic reticulum. In view of these observations the question of whether the endoplasmic reticulum or the Golgi apparatus forms the cell plate must be answered in this way: both endoplasmic reticulum and Golgi apparatus supply material for growth of the cell plate. Multivesicular bodies, coated vesicles and other small vesicles of unknown nature participate in the formation of the primary wall.

Zum Teil finanziert mit Sondermitteln des Landes Niedersachsen an Prof. Dr. M. Bopp.  相似文献   

4.
Summary In two forms of acetate flagellates, the colourless Volvocale Polytomella caeca and the green Volvocale Chlorogonium elongatum, cell organelles can be demonstrated which are ultrastructurally similar to microbodies of higher organisms. The organelles do not have a close association with the endoplasmic reticulum and are located in the peripheral cytoplasm between the elongated mitochondria. In Polytomella they exhibit more or less spherical profiles in section and have a maximum diameter of approximately 0.2–0.25 . In Chlorogonium the organelles occasionally have an elongated shape and are larger than in Polytomella. Employing the electron microscopic cytochemical reagent diaminobenzidine (DAB)/H2O2 to localize the microbodial marker enzyme catalase in these organelles, it was found that no accumulation of the electron-opaque product occurs in the microbodies either at alkaline or neutral pH or at room temperature or 37° C. Only the cristae of mitochondria are stained with the DAB reaction caused by cytochrome oxidase and possibly by a cytochrome peroxidase.Organelles of Polytomella caeca containing catalase or cytochrome oxidase can be separated by rate centrifugation of a crude particulate fraction on a sucrose gradient (Gerhardt, 1971). The particles isolated from the peak of catalase activity show the same fine structural characteristics as the microbodies in situ do. But again, there is no detectable staining of these organelles by the DAB/H2O2 reaction.The identity of the microbody-like particles in Polytomella caeca and Chlorogonium elongatum with microbodies in general is deduced despite the negative results in cytochemical localization of catalase in these organelles.  相似文献   

5.
The liver of male rats has been studied after CPIB stimulation by using the peroxidase reaction for localizing catalase in hepatic cells. CPIB administration leads to an increase in the number of microbodies, and it is suggested that one mechanism by which microbody proliferation occurs is a process of fragmentation or budding from preexisting microbodies. Reaction product was observed not only within the microbody matrix, but outside the limiting membrane of the microbody and in association with ribosomes of adjacent rough endoplasmic reticulum. This localization of reaction product is interpreted as evidence that catalase after synthesis on rough endoplasmic reticulum may accumulate near microbodies and may be transferred directly into these organelles without traversing the cisternae of the endoplasmic reticulum or Golgi apparatus.  相似文献   

6.
The widespread occurrence of plant cytosomes resembling animal microbodies   总被引:1,自引:0,他引:1  
Summary Single membrane bounded organelles characterized by a physical association with endoplasmic reticulum have been observed in a wide range of cell types and plant species including Gymnosperm, Angiosperm, Pteridophyte, and Thallophyte (algae and fungi) tissues. The morphological similarity between these organelles and animal microbodies suggests that they are cytological homologues. Plant microbodies were observed both with and without dense internal inclusions but unlike animal microbodies could not be shown to contain uricase. Plant microbody membranes are resistant to degenerative influences and remain associated with a small portion of endoplasmic reticulum even in isolated cell fractions.  相似文献   

7.
Summary The development of protein bodies in proteinoplasts of tobacco (Nicotiana tabacum L. var. Wis. 38) roots was investigated with TEM, HVEM, and enzyme cytochemistry. These plastids contain a three-dimensional network of fenestrated tubules which originate from invaginations of the inner membrane of the plastid envelope. Elaboration of the network occurs in parallel with cell differentiation: slender tubules common to plastids in meristematic cells undergo dilation as protein accumulates during cell differentiation; proteinoplasts of vacuolate and root cap cells usually contain a large protein body. The contents of the peripheral tubules, originating from the inner membrane, are less electron dense than the tubules making up the central network. Localized dilations within the tubular network result in the formation of dense spheroidal structures, protein bodies, apparently as a result of continued protein accumulation via tubules connecting to the central network. Protein might be imported from segments of rough ER attached to or apposed to the outer membrane of the proteinoplast envelope.The presence of catalase (E.C. 1.11. 1.6), peroxidase (E.C. 1.11.1.7), and cytochrome oxidase (E.C. 1.9.3.1) was demonstrated by cytochemistry with diaminobenzidine (DAB) as substrate. Oxidized DAB was found in protein bodies after incubation in each of the specific reaction media. While aminotriazole and sodium azide inhibited oxidation of DAB by catalase and peroxidase, respectively, only potassium cyanide completely inhibited oxidation of DAB in protein bodies. We conclude that protein bodies of proteinoplasts in tobacco roots are not sites for storage of protein, rather protein bodies contain heme protein(s) with strong oxidase activity that may convey a specific function to proteinoplasts.Abbreviations used CAT catalase - CYT-OX cytochrome oxidase - DAB diaminobenzidine - ER endoplasmic reticulum - f filaments - HVEM high voltage electron microscopy - M mitochondrion - MT microtubule - P peroxisome - PB protein body - PER peroxidase - Pl plastid - Pg plastoglobuli - RER rough endoplasmic reticulum - RuBPcase ribulose-1,5-bisphosphate carboxylase - S starch - T tubule - V vacuole Scientific Article No. A3997, Contribution No. 6981, of the Maryland Agricultural Experiment StationThe scale bar on each micrograph is 0.1 , unless indicated otherwise  相似文献   

8.
Russell L. Jones 《Planta》1969,85(4):359-375
Summary The ultrastructural morphology of both dry and water-imbibed barley aleurone cells is described. The aleurone cell is characterized by the presence of numerous aleurone grains and spherosomes. In addition, it contains organelles typical of other plant cells including structures similar to microbodies, and rough endoplasmic reticulum characterized by the presence of numerous polyribosomes. It is inferred that the morphological specialization of aleurone cells is related to their biochemical specialization.Work supported by National Science Foundation grant GB5863. The skillful technical assistance of Mrs. Janet Price is gratefully acknowledged.  相似文献   

9.
G. Hause  M. -B. Schröder 《Protoplasma》1987,139(2-3):100-104
Summary Karyogamy during fertilization inTriticale starts about 60 minutes after pollination. It was studied in the egg and the central cell by electron microscopy. The fusion of the sperm cell nuclei with the egg and central cell nuclei begins with nuclear envelope fusion presumably with participation of the endoplasmic reticulum cisternae. Initially, fusion is restricted to small bridges between the nuclei. It is accompanied by the appearance of intracisternal lipid droplets.  相似文献   

10.
Endogenous peroxidase activity in mononuclear phagocytes   总被引:1,自引:0,他引:1  
The diaminobenzidine (DAB) technique has been used to visualize the subcellular localization of peroxidatic enzymes in mononuclear phagocytes. The latter cells are part of the mononuclear phagocyte system (MPS), which includes the monocytes in the bone marrow and blood, their precursors in the bone marrow, and the resident macrophages in the tissues. The DAB cytochemistry has revealed distinct subcellular distribution patterns of peroxidase in the mononuclear phagocytes. Thus the technique facilitates the identification of the various phagocyte types: Promonocytes contain peroxidase reaction in the nuclear envelope, endoplasmic reticulum, Golgi apparatus, and cytoplasmic granules. Monocytes exhibit the reaction product only in cytoplasmic granules. Most resident macrophages show the activity only in the nuclear envelope and endoplasmic reticulum. Furthermore, new phagocyte types have been detected based on the peroxidase cytochemistry. Intermediate cells between monocytes and resident macrophages contain reaction product in the nuclear envelope, endoplasmic reticulum and cytoplasmic granules. The resident macrophages can be divided into two subtypes. Most of them exhibit the pattern noted above. Some, however, are totally devoid of peroxidase reaction. Most studies on peroxidase cytochemistry of monocytes and macrophages agree that the peroxidase patterns reflect differentiation or maturation stages of one cell line. Some authors, however, still interpret the patterns as invariable characteristics of separate cell lines. As to the function of the peroxidase in phagocytes, the cytochemical findings imply that two different peroxidatic enzymes exist in the latter cells: one peroxidase is synthesized in the endoplasmic reticulum of promonocytes and transported to granules via the Golgi apparatus. The synthesis ceases when the promonocyte matures to the monocyte. Upon phagocytosis the peroxidase is discharged into the phagosomes. Biochemical and functional studies have indicated that this peroxidase (myeloperoxidase) is part of a microbicidal system operating in host defence mechanisms. The other enzyme with peroxidatic activity is confined to the nuclear envelope and endoplasmic reticulum of resident macrophages in-situ and of monocytes at early stages in culture. As suggested by the subcellular distribution, the inhibition by peroxidase blockers, and the localization during phagocytosis studies, the latter peroxidase is functionally different from the myeloperoxidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A. F. Olah  W. C. Mueller 《Protoplasma》1981,106(3-4):231-248
Summary Oxidative and peroxidative activities were localized at the ultrastructural level in suspension cells of an anthocyanin-producing strain of carrot after treatment with dihydroxyphenylalanine (DOPA) and diaminobenzidine (DAB). In DOPA-treated cells a reaction ascribed to polyphenoloxidase (PPO) occurred in the thylakoids of plastids. After DAB treatment at pH 9.0 reactions occurred in microbodies and plastid thylakoids; after treatment at pH 6.8 additional reactions occurred in the mitochondrial cristae and cytoplasmic ground substance. No reaction occurred in the cell walls at either pH. A reaction could not be unequivocally detected in the vacuoles because of the natural occurrence of osmiophilic material. Application of peroxidase and PPO inhibitors indicated that four distinct systems were involved in the DAB reactions: catalase was correlated with the reaction in the microbodies, peroxidase with the reaction in the cytoplasmic ground substance, cytochromes with the mitochondrial reaction, and PPO with the reaction in the thylakoids of the plastids.Contribution No. 1964 of the Rhode Island Agricultural Experiment Station.  相似文献   

12.
Summary Cell plate formation inChara zeylanica was compared with recent models of cytokinesis in higher plants in order to gain insight into the evolutionary origin of plant cytokinetic processes. Transmission electron microscopy (TEM) reveals that while cytokinesis inC. zeylanica bears many features in common with that in higher plants, there are significant differences. Unlike that in higher plants, cytokinesis inC. zeylanica begins with a congregation of smooth membrane tubules that are closely associated with endoplasmic reticulum (ER) and Golgi membranes. Mitochondria and other organelles excluded by the phragmoplast in higher plants are present as well. Unlike in higher plants, phragmoplast microtubules persist throughout cytokinesis inC. zeylanica, and the cell plate generally forms across the whole cell at once, though development is patchy, due to small regions developing at different rates; the ends of the plate form last. By identifying aspects of cytokinesis that are different inC. zeylanica and plants, our study indicates which cytokinetic features are more likely to be derived, and which are more likely to be ancestral. In addition, we demonstrated that all nodal cells ofC. zeylanica are interconnected via plasmodesmata, lending support to the idea that, whileChara spp. are generally considered to be filamentous organisms, nodal regions may be thought of as meristemlike tissues.Abbreviations HPF high-pressure freezing - KFe potassium ferricyanide - SCF stepwise chemical fixation - TEM transmission electron microscopy  相似文献   

13.
Summary By electron microscopy, the parenchymal cells of the perianal glands of dogs contain granules which have the morphological features of microbodies (peroxisomes) including marginal plates and, occasionally, dense nucleoids. Like microbodies, they are occasionally attached to the endoplasmic reticulum. Histochemical evidence is presented suggesting that they contain at least one of the peroxisomal enzymes, L--hydroxy acid oxidase. The granules of a perianal gland adenoma showed abnormal morphologic variations.Mrs. Murtie Still, Mrs. Bertha McClure and Mr. Bob White gave valuable technical assistance.  相似文献   

14.
Summary The fine structural localization of the endogeneous peroxidase activity in the thyroid of the young frog was studied. The reaction product for peroxidase was observed over the peripheral luminal colloid and apical region of the follicular epithelial cell. Most apical small granules and some parts of Golgi lamellae and a few Golgi vesicles were specifically stained. The cisternae of rough endoplasmic reticulum and the nuclear cisternae did not demonstrate any positive reaction for peroxidase activity with difference from that of various cells of mammalia. In this study, only mature peroxidase seems to be positive for its reaction and the enzyme in the rough endoplasmic reticulum is considered to be too immature to react for DAB method in the frog thyroid cell. The relationship between the localization of peroxidase reaction and the site of the iodination of thyroglobulin was discussed.  相似文献   

15.
Microbody-like organelles occur in the cytoplasm of two chloromonadophycean algae,Vacuolaria virescens Cienkowsky andGonyostomum semen Diesing. Microbodies ofVacuolaria andGonyostomum have a granular matrix which lacks a crystalloid core; they are often present in close association with elements of the endoplasmic reticulum. The occurrence of microbodies in other algae is briefly reviewed.  相似文献   

16.
Perfused Chara cells capable of resuming ATP-dependent cytoplasmic streaming in low free Ca++ solutions have been examined by electron microscopy for myosin-like filaments. Filaments 44 nm in diameter and up to 3 micron in length have been found associated with the endoplasmic reticulum that along with mitochondria, microbodies and dictyosomes from the endoplasm becomes immobilised around the sub-cortical actin bundles when ATP is depleted. Such endoplasmic filaments have not been detected in association with mitochondria or microbodies and they have not been found in the stationary cortex. These filaments are extracted from the perfused cell by ATP unless motility-inhibiting levels of cytochalasin B are present. The filaments are not detectable in cells inactivated in solutions containing high (10(-4) M) Ca++ concentrations even when the Ca++ level is subsequently lowered. Consistent with their being required for motility, cytoplasmic streaming cannot be effeiciently reactivated by ATP in such filament-depleted cells. The possibility is discussed that the filaments contain myosin and that the endoplasmic reticulum with which they are associated has a major role in generating and transmitting the motive force for streaming.  相似文献   

17.
In male rats, fed 0.5% clofibrate in their diet for 8 days and 21 days, the ultrastructural morphometric alterations of the hepatocytes were evaluated and compared with the biochemical data. The morphologic alterations of the microbodies were particularly related to the changes of the catalase activity of the liver homogenates. The results showed a marked hypertrophy of the liver and an increase in the volume of the individual hepatocyte. The numerical density and, even more pronounced, the volume density of the microbodies increased excessively during the treatment. The numerical density of the mitochondria decreased markedly after 21 days of administration. The surface of the rough endoplasmic reticulum showed a significant decrease, whereas the surface of the smooth endoplasmic reticulum showed a hypertrophy. The catalase activity of the liver homogenates increased 2-fold after 8 days and remained at this new steady-state after 21 days of treatment. The results suggest that the enzyme content of the microbodies changed after treatment with clofibrate, and support the suggestion that clofibrate may induce the synthesis of a yet unidentified peroxisomal protein.  相似文献   

18.
Summary In situ hybridization has been used to locate mRNA, for the storage protein legumin, in cotyledon storage parenchyma tissue of developing pea (Pisum sativum L.) seeds. The mRNA was hybridized with a biotinylated probe of cDNA in pBR 322 and subsequently located by avidin conjugates. Avidin-rhodamine was used for fluorescence microscopy localization at a tissue/cellular level and avidin-peroxidase (with DAB) and avidin-ferritin compared for localization at an ultrastructural level. Specific fluorescence associated with avidin-rhodamine was distributed unevenly throughout the cytosol but the cell walls, starch grains, vacuoles and protein deposits were unstained. The sizes and distribution of the regions of higher labeling within the cytosol suggest an association with elements of the endomembrane system. Following DAB reaction of the specifically localized avidin-peroxidase most, although not all, stain product was associated with the endoplasmic reticulum. The ER-associated reaction product was also accumulated within the ER lumen.Avidin-ferritin was also localized both in the cytosol and in association with the endoplasmic reticulum, although was less readily visualized in cells with a conventional ultrastructural appearance.Localization of avidin-ferritin was more readily visualized in cells which had undergone some limited structural damage during specimen preparation. In such cases ferritin was also shown to be specifically associated with the transition vesicles and trans-face peripheral vesicles of some dictyosomes.  相似文献   

19.
Summary The ultrastructure of the vegetative cell ofBrassica napus tricellular pollen grains, just before anthesis with standard chemical fixation, is reported. The vegetative cell may be regarded as a highly differentiated and metabolically active fat-storage cell. It contains many mitochondria with a well developed internal membrane system, starchless plastids, microbodies, lipid bodies, dictyosomes and numerous vesicles thought to originate from the dictysomes. Rough endoplasmic reticulum organized in stacks of cisternae is also spatially associated with certain organelles, mainly lipid bodies, microbodies and plastids. There are also randomly distributed polyribosome areas. The microbodies are mainly polymorphic in shape and are often observed in contact with lipid bodies. The above spatial relationship implies that the microbodies may have a glyoxysomal function. In the late period of vegetative cell maturation, the microbodies are probably involved in the process of glyconeogenesis in which the conversion of lipid reserves to sugar takes place.Abbreviations VC vegetative cell - VN vegetative nucleus - SC sperm cell - M mitochondria - MB microbodies - L lipid body - P plastid - D dictyosomes  相似文献   

20.
The in vivo effects of 3-amino-1,2,4-triazole (AT) on the fine structure of microbodies in hepatic cells of male rats has been studied by the peroxidase-staining technique. Within 1 hr of intraperitoneal injection AT abolishes microbody peroxidase-staining, and the return of staining coincides temporally with the known pattern of return of catalase activity following AT inhibition; this is further evidence that the peroxidase staining of microbodies is due to catalase activity. Peroxidase staining reappears in the microbody matrix without evidence of either massive degradation or rapid proliferation of the organelles. Furthermore, during the period of return of activity, ribosomal staining occurs adjacent to microbodies whose matrix shows little or no peroxidase staining. These observations are interpreted as evidence that (a) catalase is capable of entering preexisting microbodies without traversing the cisternae of the rough endoplasmic reticulum or the Golgi apparatus, and that (b) the ribosomal staining is probably not cytochemical diffusion artifact and may represent a localized site of synthesis or activation of catalase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号