首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncogenic rearrangements of the anaplastic lymphoma kinase (ALK) gene, encoding a receptor type tyrosine kinase, are frequently associated with anaplastic large cell lymphomas. Such rearrangements juxtapose the intracellular domain of ALK to 5'-end sequences belonging to different genes and create transforming fusion proteins. To understand how the oncogenic versions of ALK contribute to lymphomagenesis, it is important to analyze the biological effects and the biochemical properties of this receptor under controlled conditions of activation. To this aim, we constructed chimeric receptor molecules in which the extracellular domain of the ALK kinase is replaced by the extracellular, ligand-binding domain of the epidermal growth factor receptor (EGFR). Upon transfection in NIH 3T3 fibroblasts, the EGFR/ALK chimera was correctly synthesized and transported to the cell surface, where it was fully functional in forming high versus low affinity EGF-binding sites and transducing an EGF-dependent signal intracellularly. Overexpression of the EGFR/ALK chimera in NIH 3T3 was sufficient to induce the malignant phenotype; the appearance of the transformed phenotype was, however, conditionally dependent on the administration of EGF. Moreover, the EGFR/ALK chimera was significantly more active in inducing transformation and DNA synthesis than the wild type EGFR when either was expressed at similar levels in NIH 3T3 cells. Comparative analysis of the biochemical pathways implicated in the transduction of mitogenic signals did not show any increased ability of the EGFR/ALK to phosphorylate PLC-gamma and MAPK compared with the EGFR. On the contrary, EGFR/ALK showed to have a consistently greater effect on phosphatidylinositol 3-kinase activity compared with the EGFR, indicating that this enzyme plays a major role in mediating the mitogenic effects of ALK in NIH 3T3 cells.  相似文献   

2.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

3.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

4.
Mer is a member of the Axl/Mer/Tyro3 receptor tyrosine kinase family, a family whose physiological function is not well defined. We constructed a Mer chimera using the epidermal growth factor receptor (EGFR) extracellular and transmembrane domains and the Mer cytoplasmic domain. Stable transfection of the Mer chimera into interleukin 3 (IL-3)-dependent murine 32D cells resulted in ligand-activable surface receptor that tyrosine autophosphorylated, stimulated intracellular signaling, and dramatically reduced apoptosis initiated by IL-3 withdrawal. However, unlike multiple other ectopically expressed receptor tyrosine kinases including full-length EGFR or an EGFR/Axl chimera, the Mer chimera did not stimulate proliferation. Moreover, and in contrast to EGFR, Mer chimera activation induced adherence and cell flattening in the normally suspension-growing 32D cells. The Mer chimera signal also blocked IL-3-dependent proliferation leading to G(1)/S arrest, dephosphorylation of retinoblastoma protein, and elongation of cellular processes. Unlike other agonists that lead to a slow (4-8 days) ligand-dependent differentiation of 32D cells, the combined Mer and IL-3 signal resulted in differentiated morphology and growth cessation in the first 24 h. Thus the Mer chimera blocks apoptosis without stimulating growth and produces cytoskeletal alterations; this outcome is clearly separable from the proliferative signal produced by most receptor tyrosine kinases.  相似文献   

5.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

6.
A method which allows direct cloning of intracellular substrates for receptor tyrosine kinases (RTKs) was developed. By applying this technique to the study of the epidermal growth factor receptor (EGFR) signaling pathway, we have isolated a cDNA, designated eps8, which predicts a approximately 92 kDa protein containing an SH3 domain. Eps8 also contains a putative nuclear targeting sequence. Antibodies specific to the eps8 gene product recognize a protein of M(r) 97 kDa and a minor 68 kDa component, which are closely related, as demonstrated by V8 proteolytic mapping. The product of the eps8 gene is tyrosine-phosphorylated in vivo following EGF stimulation of intact cells and associates with the EGFR, despite the lack of a functional SH2 domain. Several other RTKs are also able to phosphorylate p97eps8. Thus, the eps8 gene product represents a novel substrate for RTKs. Adoptive expression of the eps8 cDNA in fibroblastic or hematopoietic target cells expressing the EGFR resulted in increased mitogenic response to EGF, implicating the eps8 gene product in the control of mitogenic signals.  相似文献   

7.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

8.
Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity and appears to depend on the activation of both the JAK-2 and PI-3 kinase pathways. Activation of the Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by a kinase-impaired EGFR and is linked to survival.  相似文献   

9.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

10.
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.  相似文献   

11.
The epidermal growth factor receptor (EGFR) and gp185erbB-2 are closely related tyrosine kinases. Despite extensive sequence and structural homology, these two receptors display quantitative and qualitative differences in their ability to couple with mitogenic signalling pathways. By using chimeric molecules between EGFR and erbB-2, we found that the determinants responsible for the specificity of mitogenic signal transduction are located in the amino-terminal half of the tyrosine kinase domain of either receptor. In the EGFR, mutational analysis within this subdomain revealed that deletion of residues 660 to 667 impaired receptor mitogenic activity without affecting its tyrosine kinase properties. This sequence is therefore likely to contribute to the specificity of substrate recognition by the EGFR kinase.  相似文献   

12.
13.
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.  相似文献   

14.
An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals.  相似文献   

15.
We report a mechanism by which the adapter protein Gene 33 (also called RALT and MIG6) regulates epidermal growth factor receptor (EGFR) signaling. We find that Gene 33 inhibits EGFR autophosphorylation and specifically blunts epidermal growth factor (EGF)-induced activation and/or phosphorylation of Ras, ERK, JNK, Akt/PKB, and retinoblastoma protein. The Ack homology domain of Gene 33, which contains the previously identified EGFR binding domain, is both necessary and sufficient for this inhibition of EGFR autophosphorylation. The endogenous Gene 33 polypeptide is induced by EGF, platelet-derived growth factor, serum, and dexamethasone (Dex) in Rat 2 rat fibroblasts. Dex induces Gene 33 expression and inhibits EGFR phosphorylation and EGF signaling. RNA interference-mediated silencing of Gene 33 significantly reverses this effect. Overexpression of Gene 33 completely blocks EGF-induced protein and DNA synthesis in Rat 2 cells, whereas gene 33 RNA interference substantially enhances EGF-induced protein and DNA synthesis in Rat 2 cells. Our results indicate that Gene 33 is a physiological feedback inhibitor of the EGFR, functioning to inhibit EGFR phosphorylation and all events induced by EGFR activation. Our results also indicate a role for Gene 33 in the suppression, by Dex, of EGF signaling pathways. We propose that Gene 33 may function in the cross-talk between EGF signaling and other mitogenic and/or stress signaling pathways.  相似文献   

16.
Murine epidermal growth factor (EGF) binds with approximately 250-fold higher binding affinity to the human EGF receptor (EGFR) than to the chicken EGFR. This difference in binding affinity enabled the identification of a major ligand-binding domain for EGF by studying the binding properties of various chicken/human EGFR chimera expressed in transfected cells lacking endogenous EGFR. It was shown that domain III of EGFR is a major ligand-binding region. Here, we analyze the binding properties of novel chicken/human chimera to further delineate the contact sequences in domain III and to assess the role of other regions of EGFR for their contribution to the display of high-affinity EGF binding. The chimeric receptors include chicken EGFR containing domain I of the human EGFR, chicken receptor containing domain I and III of the human EGFR, and two chimeric chicken EGFR containing either the amino terminal or the carboxy terminal halves of domain III of human EGFR, respectively. In addition, the binding of various human-specific anti-EGFR monoclonal antibodies that interfere with EGF binding is also compared. It is concluded that noncontiguous regions of the EGFR contribute additively to the binding of EGF. Each of the two halves of domain III has a similar contribution to the binding energy, and the sum of both is close to that of the entire domain III. This suggests that the folding of domain III juxtaposes sequences that together constitute the ligand-binding site. Domain I also provides a contribution to the binding energy, and the added contributions of both domain I and III to the binding energy generate the high-affinity binding site typical of human EGFR.  相似文献   

17.
Angiotensin II (Ang II) induces, through AT1, intracellular Ca(2+) increase in both normal and cancerous breast cells in primary culture (Greco et al., 2002 Cell Calcium 2:1-10). We here show that Ang II stimulated, in a dose-dependent manner, the 24 h-proliferation of breast cancer cells in primary culture, induced translocation of protein kinase C (PKC)-alpha, -beta1/2, and delta (but not -epsilon, -eta, -theta, -zeta, and -iota), and phosphorylated extracellular-regulated kinases 1 and 2 (ERK1/2). The proliferative effects of Ang II were blocked by the AT1 antagonist, losartan. Also epidermal growth factor (EGF) had mitogenic effects on serum-starved breast cancer cells since induced cell proliferation after 24 h and phosphorylation of ERK1/2. The Ang II-induced proliferation of breast cancer cells was reduced by (a) G?6976, an inhibitor of conventional PKC-alpha and -beta1, (b) AG1478, an inhibitor of the tyrosine kinase of the EGF receptor (EGFR), and (c) downregulation of 1,2-diacylglycerol-sensitive PKCs achieved by phorbol 12-myristate 13-acetate (PMA). A complete inhibition of the Ang II-induced cell proliferation was achieved using the inhibitor of the mitogen activated protein kinase kinase (MAPKK or MEK), PD098059, or using G?6976 together with AG1478. These results indicate that in human primary cultured breast cancer cells AT1 regulates mitogenic signaling pathways by two simultaneous mechanisms, one involving conventional PKCs and the other EGFR transactivation.  相似文献   

18.
3Y1 rat fibroblasts overexpressing the epidermal growth factor (EGF) receptor (EGFR cells) become transformed when treated with EGF. A common response to oncogenic and mitogenic stimuli is elevated phospholipase D (PLD) activity. RalA, a small GTPase that functions as a downstream effector molecule of Ras, exists in a complex with PLD1. In the EGFR cells, EGF induced a Ras-dependent activation of RalA. The activation of PLD by EGF in these cells was dependent upon both Ras and RalA. In contrast, EGF-induced activation of Erk1, Erk2, and Jun kinase was dependent on Ras but independent of RalA, indicating divergent pathways activated by EGF and mediated by Ras. The transformed phenotype induced by EGF in the EGFR cells was dependent upon both Ras and RalA. Importantly, overexpression of wild-type RalA or an activated RalA mutant increased PLD activity in the absence of EGF and transformed the EGFR cells. Although overexpression of PLD1 is generally toxic to cells, the EGFR cells not only tolerated PLD1 overexpression but also became transformed in the absence of EGF. These data demonstrate that either RalA or PLD1 can cooperate with EGF receptor to transform cells.  相似文献   

19.
The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regions are responsible for this specificity. Here we describe a genetically engineered EGFR mutant containing a threonine for arginine substitution at position 662 in the EGFR juxtamembrane domain, corresponding to threonine 694 in gp185erbB-2. This mutant, designated EGFRThr662, displayed affinity for EGF binding and catalytic properties that were indistinguishable from those of the wild type EGFR. However, EGFRThr662 behaved much as gp185erbB-2 in a number of bioassays which readily distinguish between the mitogenic effects of EGFR and gp185erbB-2. Moreover, significant differences were detected in the pattern of intracellular proteins phosphorylated on tyrosine in vivo by EGFR and EGFRThr662 in response to EGF. Thus, small differences in the primary sequence of two closely related receptors have dramatic effects on their ability to couple with mitogenic pathways.  相似文献   

20.
Studies on the differential routing of internalized epidermal growth factor receptors (EGFRs) induced by EGF, TGF alpha, and the superagonist EGF-TGF alpha chimera E4T suggested a correlation between receptor recycling and their mitogenic potency. EGFR sorting to lysosomes depends on its kinase domain and its ubiquitination by Cbl proteins. Proteasomes have also been proposed to regulate EGFR degradation, but the underlying mechanism remains obscure. Here we evaluated EGFR activation, Cbl recruitment, EGFR ubiquitination and degradation in response to EGF, TGF alpha, and E4T. We also determined the fate of activated EGFRs and Cbl proteins by using v-ATPase (bafilomycin A1) and proteasome (lactacystin) inhibitors. Our results demonstrate that E4T and TGF alpha provoke decreased Cbl recruitment, EGFR ubiquitination and EGFR degradation compared with EGF. Furthermore, bafilomycin treatment blocks EGFR but not c-Cbl degradation. In contrast, lactacystin treatment blocks EGF-induced c-Cbl degradation but does not block EGFR degradation, even though lactacystin causes a minor delay in EGFR degradation. Surprisingly, even though bafilomycin completely blocks EGFR degradation, it does not prevent EGFR de-ubiquitination upon prolonged EGF stimulation. Strikingly, when combined with bafilomycin, lactacystin treatment stabilizes the ubiquitinated EGFR and prevents its de-ubiquitination. We conclude that the enhanced EGFR recycling that has been observed in HER-14 cells following TGF alpha or E4T stimulation correlates with decreased EGFR ubiquitination and EGFR degradation, and that proteasomal activity is required for de-ubiquitination of the EGFR prior to its lysosomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号