首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upflow anaerobic sludge blanket (UASB) reactor was evaluated for its efficacy in decolourization and reduction in chemical oxygen demand (COD) of real textile wastewater (RTW) under different operational conditions. The efficiency of UASB reactor in reducing COD was found to be over 90%. Over 92% of colour removal due to biodegradation was achieved. The activities of the anaerobic granules were not affected during the treatment of textile wastewater. Cocci-shaped bacteria were the dominant group over Methanothrix like bacteria in textile wastewater treatment. Alkalinity, volatile fatty acids (VFA) content and pH in effluents indicated that the anaerobic process was not inhibited by textile wastewater. It is concluded that UASB reactor system can effectively be used in the treatment of textile wastewater for the removal of colour and in the reduction of COD.  相似文献   

2.
The suitability of two stage biomethanation process using upflow anaerobic sludge blanket (UASB) bioreactors was studied for the treatment of low strength industrial effluents like rice mill wastewater. Maximum VFA yield was 0.75 mg (as acetic acid) per mg of COD consumed at a flow rate of 25 ml/min. Hydraulic retention time (HRT) of 1 hr was found suitable for acidification process. In the methanogenic reactor, the overall BOD and COD reductions were 89% and 78% respectively at loading rate of 3 kg COD mх dу, and HRT of 30 hrs. Gas yield in methanogenic reactor was 0.56 lits. per kg COD consumed which contains 62% v/v methane.  相似文献   

3.
In continuously stirred tank reactor experiments, with manure as substrate at thermophilic temperatures, the use of volatile fatty acids (VFA) as process indicators was investigated. Changes in VFA level were shown to be a good parameter for indicating process instability. The VFA were evaluated according to their relative changes caused by changes in hydraulic loading, organic loading or temperature. Butyrate and isobutyrate together were found to be particularly good indicators. Butyrate and isobutyrate concentrations increased significantly 1 or 2 days after the imposed perturbation, which makes these acids suitable for process monitoring and important for process control of the anaerobic biological system. In addition it was shown in a batch experiment that VFA at concentrations up to 50 mM did not reduce the overall methane production rate. This showed that VFA accumulation in anaerobic reactors was the result of process imbalance, not the cause of inhibition, thus justifying the use of VFA as process indicators.  相似文献   

4.
The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1mM Co, Ni and Fe; 30°C; 96h) at an organic loading rate (OLR) of 5gCOD l reactor–1d–1. One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30h pH shock, but a second 4day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out-competition of acetogens by methanogens. Zinc, copper and manganese supply did not have a clear effect on the acetate removal and methanol conversion, but zinc may have induced the onset of methanol degradation after day 152 in R1.  相似文献   

5.
The treatment of high strength sewage was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-digester system. The one-stage UASB reactor was operated in Palestine at a hydraulic retention time (HRT) of 10h and at ambient air temperature for a period of more than a year in order to asses the system response to the Mediterranean climatic seasonal temperature fluctuation. Afterwards, the one-stage UASB reactor was modified to a UASB-digester system by incorporating a digester operated at 35 degrees C. The achieved removal efficiencies in the one-stage UASB reactor for total, suspended, colloidal, dissolved and VFA COD were 54, 71, 34, 23%, and -7%, respectively during the first warm six months of the year, and achieved only 32% removal efficiency for COD total over the following cold six months of the year. The modification of the one-stage UASB reactor to a UASB-digester system had remarkably improved the UASB reactor performance as the UASB-digester achieved removal efficiencies for total, suspended, colloidal, dissolved and VFA COD of 72, 74, 74, 62 and 70%. Therefore, the anaerobic treatment of high strength sewage during the hot period in Palestine in a UASB-digester system is very promising.  相似文献   

6.
Studies were carried out with carbon dioxide absorber (CA) to evaluate the usage of carbon dioxide (CO(2)) in the biogas as an acidifying agent by Up-flow Anaerobic Sludge Blanket (UASB) reactor. Investigation on the 5l absorber revealed that ratio of brewery wastewater (BW) flow rate to biogas flow rate of 4.6-5.2 was optimum for minimum consumption of CO(2) for acidification. The acidified BW after the absorber was treated in UASB reactor with optimum organic loading rate (OLR) of 23.1 kg COD/m(3)/day and hydraulic retention time (HRT) of 2h. UASB reactor exhibited good performance with respect to reduction of chemical oxygen demand (COD) and methane yield. The implications of the present study on the full scale anaerobic reactor of medium scale brewery revealed that sufficient cost savings could be made if CO(2) in the biogas or CO(2) that was being wasted (let out to the atmosphere) can be used instead of sulfuric acid (H(2)SO(4)) for pH control.  相似文献   

7.
The anaerobic transformation and degradation of nitrophenols by granular sludge was investigated in upflow anaerobic sludge blanket (UASB) reactors continuously fed with a volatile fatty acid (VFA) mixture as the primary substrate. During the start-up, subtoxic concentrations of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2, 4-dinitrophenol (2, 4-DNP) were utilized. 4-NP and 2, 4-DNP were readily converted to the corresponding aromatic amine; whereas 2-NP was converted to nonaromatic products via intermediate formation of 2-aminophenol (2-AP). These conversions led to a dramatic detoxification of the mononitrophenols because the reactors treated the nitrophenolics at the concentrations which were over 25 times higher than those that caused severe inhibition. VFA removal efficiencies greater than 99% were achieved in both reactors at loading rates greater than 11.4 g COD per liter of reactor volume per day even at volumetric loading of mononitrophenols up to 910 mg/L . d.The sludges obtained from each of the reactors at the end of the continuous experiments were assayed for their specific nitrophenol reducing activity in the presence of different primary substrates. Reduction rates of 45 and 26 mg/g volatile suspended solids per day were observed for 2-NP and 4-NP, respectively, when utilizing the VFA mixture as primary substrate. Hydrogen, an interspecies-reduced compound, and substrates that provide interspecies-reducing equivalents-such as butyrate, propionate, and ethanol stimulated nitrophenol reduction, whereas acetate and methanol did not. Anaerobic batch biodegradability tests with the 2-NP-adapted sludge revealed that its corresponding aromatic amine, 2-AP, was degraded to methane at a specific rate of 14.5 mg/g VSS . d. Acetate was observed to be the major intermediate during 2-AP degradation in the presence of a specific methanogenic inhibitor 2-bromoethanesulfonate. The results of this study indicate that UASB reactors can be applied to rapidly detoxify and, under certain circumstances, degrade nitroaromatic compounds. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
It has been shown that the Upflow Anaerobic Sludge Bed (UASB) system data reported earlier(1) cannot be explained by simple Monod-type substrate consumption patterns. An autoinhibition model was also ruled out because the substrate concentration range over which hysteresis was observed was much larger than such a model would predict. However, propionic and acetic acids were found to inhibit each other's conversion machineries. Since in the UASB system the biocatalyst is flocculated, it was found that a model additionally incorporating this facet of the reactor set-up could explain the steady-state data very well. Using the parameters generated from steady-state data and data from butyric acid step change,(1) i.e., the entire set of parameters (Table I), a very good agreement between predicted and observed data was found. International Mathematical and Statistical Libraries (IMSL) and Upjohn's NONLIN library combined with various root-finding and integrating subroutines were used for parameter estimation. The model thus described was used to predict the response of the UASB system when acetic acid and propionic acid influent concentrations were stepped-up/down. The agreement between the predicted and observed data was found to be excellent in each case during the step-up schedule. During the step-down the data seemed to indicate that the UASB system, like any other chemostat, responded faster than predicted. This could be due to the fact that when the culture has to "gear up" part of the lag time is the time required for the cell to produce the requisite amount of enzymes. In the case of "gearing down" this time is not required and the system responds faster.  相似文献   

9.
Thermophilic anaerobic digestion of high strength wastewaters   总被引:2,自引:0,他引:2  
Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/m(3)) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55 degrees C is comparable with that at 30 degrees C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. This can be attributed to increasing concentrations of inhibitory compounds, resulting in increasing volatile fatty acid (VFA) concentrations in the effluent. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors. Thermophilic granular sludge, cultivated on sucrose, was used as seed material. The sludge required a 4-month adaptation period, during which the size of the sludge granules decreased significantly. However, the settling characteristics remained satisfactory. After adaptation, high loading and methane generation rates could be accommodated at satisfactory treatment efficiencies, namely, 86.4 kg COD/m(3) day and 26 m(3) CH(4)(STP)/m(3) day, respectively. As in the semicontinuously fed digesters, the effluent VFA concentrations were virtually independent of the loading rates applied, indicating that the toxicity of the vinasse is more important than the loading rate in determining the efficiency of the conversion of vinasse to methane.  相似文献   

10.
Up-flow anaerobic sludge blanket (UASB) reactors are being used with increasing regularity all over the world, especially in India, for a variety of wastewater treatment operations. Consequently, there is a need to develop methodologies enabling one to determine UASB reactor performance, not only for designing more efficient UASB reactors but also for predicting the performance of existing reactors under various conditions of influent wastewater flows and characteristics. This work explores the feasibility of application of an artificial neural network-based model for simulating the performance of an existing UASB reactor. Accordingly, a neural network model was designed and trained to predict the steady-state performance of a UASB reactor treating high-strength (unrefined sugar based) wastewater. The model inputs were organic loading rate, hydraulic retention time, and influent bicarbonate alkalinity. The output variables were one or more of the following, effluent substrate concentration (Se), reactor bicarbonate alkalinity, reactor pH, reactor volatile fatty acid concentration, average gas production rate, and percent methane content of the gas. Training of the neural network model was achieved using a large amount of experimentally obtained reactor performance data from the reactor mentioned above as the training set. Training was followed by validation using independent sets of performance data obtained from the same UASB reactor. Subsequently, simulations were performed using the validated neural network model to determine the impact of changes in parameters like influent chemical oxygen demand (COD) concentration and hydraulic retention time on the reactor performance. Simulation results thus obtained were carefully analyzed based on qualitative understanding of UASB process and were found to provide important insights into key variables that were responsible for influencing the working of the UASB reactor under varying input conditions.  相似文献   

11.
Evidence is provided that reductive acetogenesis can be stimulated in ruminal samples during short-term (24-h) incubations when methanogenesis is inhibited selectively. While addition of the reductive acetogen Peptostreptococcus productus ATCC 35244 alone had no significant influence on CH4 and volatile fatty acid (VFA) production in ruminal samples, the addition of this strain together with 2-bromoethanesulfonic acid (BES) (final concentration, 0.01 or 0.03 mM) resulted in stimulation of acetic acid production and H2 consumption. Since acetate production exceeded amounts that could be attributed to reductive acetogenesis, as measured by H2 consumption, it was found that P. productus also fermented C6 units (glucose and fructose) heterotrophically to mainly acetate (> 99% of the total VFA). Using 14CH3COOH, we concluded that addition of BES and BES plus P. productus did not alter the consumption of acetate in ruminal samples. The addition of P. productus to BES-treated ruminal samples caused supplemental inhibition of CH4 production and stimulation of VFA production, representing a possible energy gain of about 13 to 15%.  相似文献   

12.
Anaerobic co-digestion of food waste and biosolids was carried out in sequential batch and single-stage batch systems in four treatments. Methane yield, which was used as a functional process parameter, differed between treatments, with the single-stage batch system generating lower volumes than the sequential batch systems. Volatile fatty acid (VFA) concentrations and pH in the leachate also differed between treatments. VFA concentrations were highest and methane generation yields lowest in the single-stage batch system in comparison to the sequential batch systems. The anaerobic microbial community structure of the domains Archaea and Bacteria, determined by denaturing gradient gel electrophoresis, differed between treatments and was correlated to a number of environmental parameters such as pH, VFA concentration and methane generation rate. Methane generation rate was significantly correlated to the community structure of Bacteria but not Archaea. This indicated that the substrates that are produced by acetogens (Bacteria) are important for the growth and community structure of the methanogens (Archaea). Community structure of Archaea changed over time, but this had no observable effect on functional ability based on methane yields. Microbial diversity (H′) was shown to be not important in developing a functionally successful anaerobic microbial community.  相似文献   

13.
The aim of the study was to implement a mathematical model to simulate two-phase anaerobic digestion (TPAD) process which consisted of an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) reactor in series treating traditional Chinese medicine (TCM) wastewater. A model was built on the basis of Anaerobic Digestion Model No. 1 (ADM1) while considering complete mixing model for the CSTR, and axial direction discrete model and mixed series connection model for the UASB. The mathematical model was implemented with the simulation software package MATLABTM/Simulinks. System performance, in terms of COD removal, volatile fatty acids (VFA) accumulation and pH fluctuation, was simulated and compared with the measured values. The simulation results indicated that the model built was able to well predict the COD removal rate (−4.8–5.0%) and pH variation (−2.9–1.4%) of the UASB reactor, while failed to simulate the CSTR performance. Comparing to the measured results, the simulated acetic acid concentration of the CSTR effluent was underpredicted with a deviation ratios of 13.8–23.2%, resulting in an underprediction of total VFA and COD concentrations despite good estimation of propionic acid, butyric acid and valeric acid. It is presumed that ethanol present in the raw wastewater was converted into acetic acid during the acidification process, which was not considered by the model. Additionally, due to the underprediction of acetic acid the pH of CSTR effluent was overestimated.  相似文献   

14.
The effects of suppression of methanogenesis with a drug, 2-bromoethanesulfonic acid (BES), on the hindgut ecosystem and development of the cockroach Periplaneta americana fed either low or high fiber diet were evaluated by measuring methane production, volatile fatty acids (VFA) concentrations in the hindgut, cockroach weight gain and development time (the length of nymphal period). Methane production and VFA concentrations in the hindgut of cockroaches fed high fiber diet were significantly higher than those fed low fiber diet. Although BES treatment greatly reduced methane production, VFA concentrations in the hindgut, cockroach weight gain and development time were not significantly altered. These results indicate that methanogenic microbes are not essential for keeping low hydrogen pressure in the hindgut lumen, and normal cockroach development.  相似文献   

15.
Pot ale from a pilot-scale malt whisky distillery was treated using a mesophilic upflow anaerobic sludge blanket (UASB) digester. Stable operation was observed at organic loading rates (OLRs) of 5.46 kg COD/m3 day or less when the pot ale was diluted with tap water. Digester failure occurred when undiluted pot ale was used, even though OLR was less than 5 kg COD/m3 day. Overall performance was worse than that observed previously when UASB digesters were used to treat pot ale from a different source supplemented with trace elements. A substantial proportion of effluent chemical oxygen demand (COD) was present as volatile fatty acids (VFA), particularly during periods of reactor stress, indicating that overall performance was limited by the rate of VFA conversion. Wastewater alkalinity rose during digestion. The sludge which developed in the reactor was flocculent but did not form compact granules.  相似文献   

16.
An attempt was done to identify some factors influencing the caecal fermentation pattern in poultry. Experiments were conducted to study effects of carbohydrate substrates (feed components and supplements) and antibiotics on the formation of volatile fatty acids (VFA) and methane in in vitro incubations of the caecal contents of 7-week-old chickens. Stoichiometry of fermentation differed in cultures with different carbohydrates. Fermentation pattern characterized by high propionate and low acetate production was found in cultures with lactose (0.447 and 0.376 mol/1 mol of VFA produced, respectively) and, to a lesser extent, also in cultures with raffinose. Acetate was the predominant metabolite of starch, pectin and xylan (0.727, 0.773 and 0.685 mol/1 mol of VFA produced, respectively). Fermentation of inulin resulted in high proportion of butyrate, 0.221 mol/1 mol of VFA. Other polysaccharides produced only 0.060–0.111 mol of butyrate per 1 mol of VFA. Oligosaccharides (lactose, raffinose) were fermented more rapidly than polysaccharides. Fermentation of inulin yielded more VFA than fermentation of starch, pectin and xylan. No production of VFA from carboxymethylcellulose was observed. On average, 11 mols of VFA were produced per mol of methane. Lasalocid significantly increased molar proportion of propionate, which is potentially beneficial from the point of view of salmonellae control. The magnitude of improvement, however, was small. Other feed antibiotics tested (avoparcin, bacitracin, lincomycin, spiramycin, tylosin, virginiamycin) produced only non-significant or marginal fermentation shifts. Formation of valerate, isoacids and methane was not significantly influenced by the substrate or by antibiotic treatment.  相似文献   

17.
A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5°C in winter to 25°C in summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation.  相似文献   

18.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
The effect of nickel deprivation from the influent of a mesophilic (30 degrees C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5-15 g COD l(-1) day(-1) for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (+/-0.167) g CH(4)-COD g VSS(-1) day(-1) compared to 2.027 (+/-0.111) g CH(4)-COD g VSS(-1) day(-1) in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 muM Ni (dosed as NiCl(2)) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation.  相似文献   

20.
Short-chain volatile fatty acids (VFA) and methane are the products from a wide variety of microorganisms living in the gastrointestinal tract. The objective of this study was to examine effects of feedstuff and select nitro compounds on VFA and methane production during in vitro incubation of laying hen cecal contents and rumen fluid from cattle and sheep. In the first experiment, one of the three nitro compound was added to incubations containing cecal contents from laying hens supplemented with either alfalfa (AF) or layer feed (LF). Both feed material influenced VFA production and acetic acid was the primary component. Incubations with nitro ethanol and 2-nitropropanol (NP) had significantly (P<0.05) higher propionate concentrations than incubations with added nitroethane (NE). The results further indicated that incubations containing LF produced significantly (P<0.05) more butyrate than incubations with added AF. Addition of NP and LF to incubations of avian cecal flora may promote Gram-positive, saccharolytic, VFA-producing bacteria, especially Clostridium spp. which is the predominant group in ceca. Similar to VFA production, both feed materials fostered methane production in the incubations although methane was lower (P<0.05) in incubations with added nitro compound, particularly NE. In experiments 3-8, NE was examined in incubations of bovine or ovine rumen fluid or cecal contents containing either AF or LF. Unlike cecal contents, LF significantly (P<0.05) supported in vitro methane production in incubations of both rumen fluids. The results show that NE impedes methane production, especially in incubations of chicken cecal contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号