首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to evaluate the dependence of the OH radical yield on the atomic number and the energy of the heavy ions to understand chemical reactions of aqueous solutions. The total yields of oxidized products from phenol in water increased superlinearly as the incident energy increased from 5 MeV/nucleon to 18 MeV/nucleon for carbon and neon ions. The radiolytic yields of OH radicals produced by the ions were determined by analyzing the relationships of the oxidation yields of phenol to the incident energies up to 18 MeV/nucleon for ions in the range of LET from 110 eV/nm to 550 eV/nm and from 320 eV/nm to 1100 eV/nm for carbon and neon ions, respectively. The yields of the OH radicals increased with the specific energy for the same kind of ion and decreased with the atomic number for different ions used at the same specific energy.  相似文献   

2.
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.  相似文献   

3.
Accelerator-based measurements and model calculations have been used to study the heavy-ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high-energy iron ions characteristic of a significant part of the galactic cosmic-ray (GCR) heavy-ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energies and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however, the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field.  相似文献   

4.
TILDA, a new Monte Carlo track structure code for ions in gaseous water that is valid for both high-LET (approximately 10(4) keV/microm) and low-LET ions, is presented. It is specially designed for a comparison of the patterns of energy deposited by a large range of ions. Low-LET ions are described in a perturbative frame, whereas heavy ions with a very high stopping power are treated using the Lindhard local density approximation and the Russek and Meli statistical method. Ionization cross sections singly differential with energy compare well with the experiment. As an illustration of the non-perturbative interaction of high-LET ions, a comparison between the ion tracks of light and heavy ions with the same specific energy is presented (1.4 MeV/nucleon helium and uranium ions). The mean energy for ejected electrons was found to be approximately four times larger for uranium than for helium, leading to a much larger track radius in the first case. For electrons, except for the excitation cross sections that are deduced from experimental fits, cross sections are derived analytically. For any orientation of the target molecule, the code calculates multiple differential cross sections as a function of the ejection and scattering angles and of the energy transfer. The corresponding singly differential and total ionization cross sections are in good agreement with experimental data. The angular distribution of secondary electrons is shown to depend strongly on the orientation of the water molecule.  相似文献   

5.
The effects of cosmic radiation in single cells, organic tissues and electronics are a major concern for space exploration and manned missions. Standard heavy ions radiation tests employ ion cocktails with energy of the order of 10 MeV per nucleon and with a linear energy transfer ranging from a few MeV cm(2) mg(-1) to hundreds of MeV cm(2) mg(-1). In space, cosmic rays show significant fluxes at energies up to the order of GeV per nucleon. The present work aims at investigating single event damage due to low-, high- and very-high-energy ions. The European Space Agency reference single event upset monitor data are used to support the discussion. Finally, the effect of ionization induced directly by primary particles and ionization induced by recoils produced in an electronic device is investigated for different types of devices.  相似文献   

6.
7.
The paper presents a theoretical model for the response of a tissue-equivalent proportional counter (TEPC) irradiated with charged particles. Heavy ions and iron ions in particular constitute a significant part of radiation in space. TEPCs are used for all space shuttle and International Space Station (ISS) missions to estimate the dose and radiation quality (in terms of lineal energy) inside spacecraft. The response of the tissue-equivalent proportional counters shows distortions at the wall/cavity interface. In this paper, we present microdosimetric investigation using Monte Carlo track structure calculations to simulate the response of a TEPC to charged particles of various LET (1 MeV protons, 2.4 MeV alpha particles, 46 MeV/nucleon 20Ne, 55 MeV/nucleon 20Ne, 45 MeV/nucleon 40Ar, and 1.05 GeV/nucleon 56Fe). Data are presented for energy lost and energy absorbed in the counter cavity and wall. The model calculations are in good agreement with the results of Rademacher et al. (Radiat. Res. 149, 387-389, 1998), including the study of the interface between the wall and the sensitive region of the counter. It is shown that the anomalous response observed at large event sizes in the experiment is due to an enhanced entry of secondary electrons from the wall into the gas cavity.  相似文献   

8.
Summary Inactivation, mutagenesis of histidine reversion and the involvement of DNA repair were studied in spores ofBacillus subtilis irradiated with heavy ions at LBL, Berkeley and GSI, Darmstadt. Five groups of ions (from boron to uranium) were used with residual energies from 0.2 MeV/u up to 18.6 MeV/u; in addition, carbon ions were used with a residual energy of 120 MeV/u. Action cross sections of both inactivation and mutagenesis show a similar dependence on ion mass and energy: for lighter ions (Z 10), the lethal response is nearly energy independent (Z = 10) or decreasing with energy (Z 6); these light ions, up to 18.6 MeV/u, induce hardly any mutations. For heavier ions (Z 26), the lethal as well as the mutagenic responses increase with ion mass and energy up to a maximum or saturation. The efficiency of DNA repair to improve survival and the mutagenic efficiency per lethal event, both, increase with ion energy up to a saturation value which, depending on strain and endpoint, either roughly coincides with the X-ray value or is smaller than that after X-ray treatment. For repair based on recombination events, the increase in the survival effects with ion energy is more pronounced than for that based on repair replication. At energies of 1 MeV/u or below, neither DNA repair nor mutation induction appear to be significant. The results support previous suggestions on the importance of the radial distribution of the energy around the ion track in biological action cross section and the evidence that the entire core of the spore represents the sensitive site in responses to heavy ions.  相似文献   

9.
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.  相似文献   

10.
Formic acid solutions of 1, 10, 100, and 1000 mM have been irradiated with 4He ions of 5 to 25 MeV, and the production of OH radicals has been determined by measuring the yield of CO2. The differential OH radical yields were obtained from the observed energy dependencies; with 25 MeV 4He ions they range from 1.91 to 3.48 molecules/100 eV for formic acid concentrations of 1 to 1000 mM, respectively. The OH radical yields decrease with decreasing particle energy, and at the maximum LET (230 eV/nm) they range from 0.30 at 1 mM to 0.82 molecules/100 eV at 1000 mM. These values are only 15 to 20% of that found with fast electrons. The OH radical yields are relatively more dependent on formic acid concentration at higher 4He ion energies. The average time dependencies of the OH radical from 7.7 ns to 7.7 microseconds were estimated from the formic acid concentration dependencies at various 4He energies. In terms of absolute yields, there is a considerable variation in the yields of OH radicals with time at the highest energies, but at the maximum LET the OH radical yields are nearly invariant with time after about 10 ns.  相似文献   

11.
The extent of hydroxyl radical mediated cell inactivation was measured for a variety of particle beams ranging from 8.5 Me V/u neon ions to 570 Me V/u argon ions. In general, the fraction of the total radiosensitivity caused by OH decreases from close to 60 per cent at low ionization density or low linear energy transfer (low LET) to close to 25 per cent at high LET for aerobically irradiated mammalian cells. The extent of OH induced cell lethality can be explained in terms of LET infinity only for low energy or low atomic number particles where fragmentations and complicated track structures do not contaminate the characteristic particle LET. For example, at a calculated LET infinity of 100 ke V/micron, the OH mediated fraction of the total radiation damage is about 25 per cent for low energy carbon but close to 40 per cent for high energy carbon ions. For low energy charged nuclei of approximately the same energy, as the 5.4-13.4 MeV/u He, Li, C and Ne ions in this report, there is a predictable diminution of the OH mediated effect with increasing LET infinity; however, the biological effect cannot be predicted accurately from calculated LET infinity values for high energy particle irradiation, nor indeed from a variety of low energy charged particles of quite different energies (incident velocities). This illustrates the unsuitability of using LET as a unifying parameter, except under specific circumstances. As more is learned about the energy deposition for energized charged particles in terms of track structure (core and penumbra), it may be possible to characterize the radiobiological data with a better physical parameter than LET infinity.  相似文献   

12.
Summary Mutation induction (resistance to sodium azide) in spores ofBacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons.  相似文献   

13.
Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.  相似文献   

14.
We have calculated the electronic energy loss of proton and α-particle beams in dry DNA using the dielectric formalism. The electronic response of DNA is described by the MELF-GOS model, in which the outer electron excitations of the target are accounted for by a linear combination of Mermin-type energy-loss functions that accurately matches the available experimental data for DNA obtained from optical measurements, whereas the inner-shell electron excitations are modeled by the generalized oscillator strengths of the constituent atoms. Using this procedure we have calculated the stopping power and the energy-loss straggling of DNA for hydrogen- and helium-ion beams at incident energies ranging from 10 keV/nucleon to 10 MeV/nucleon. The mean excitation energy of dry DNA is found to be I = 81.5 eV. Our present results are compared with available calculations for liquid water showing noticeable differences between these important biological materials. We have also evaluated the electron excitation probability of DNA as a function of the transferred energy by the swift projectile as well as the average energy of the target electronic excitations as a function of the projectile energy. Our results show that projectiles with energy ?100 keV/nucleon (i.e., around the stopping-power maximum) are more suitable for producing low-energy secondary electrons in DNA, which could be very effective for the biological damage of malignant cells.  相似文献   

15.
The induction of forward mutations (resistance to canavanine) by heavy ion bombardment was investigated in wild type haploid yeast Saccharomyces cerevisiae. Accelerated ions of argon, titanium, nickel, krypton, xenon, lead and uranium with specific energies between 1.7 and 9.25 MeV/u were obtained from the UNILAC machine at the Gesellschaft für Schwerionenforschung, Darmstadt/Germany. LET-values ranged from 1200 to about 15 000 keV/microns. There was no unequivocal dependence of mutation induction cross section on either LET or Z*2/beta 2, but also a prominent influence of ion specific energy. This is explained by the action of long-ranging delta-electrons.  相似文献   

16.
Experiments have been performed to measure the response of a spherical tissue-equivalent proportional counter (TEPC) and a silicon-based LET spectrometer (RRMD-III) to protons with energies ranging from 50-200 MeV. This represents a large portion of the energy distribution for trapped protons encountered by astronauts in low-Earth orbit. The beam energies were obtained using plastic polycarbonate degraders with a monoenergetic beam that was extracted from a proton synchrotron. The LET spectrometer provided excellent agreement with the expected LET distribution emerging from the energy degraders. The TEPC cannot measure the LET distribution directly. However, the frequency mean value of lineal energy, y(-)(f), provided a good approximation to LET. This is in contrast to previous results for high-energy heavy ions where y(-)(f) underestimated LET, whereas the dose-averaged lineal energy, y(-)(D), provided a good approximation to LET.  相似文献   

17.
Survival of a diploid and a haploid wild type and a radiation-sensitive rad52-mutant was investigated after exposure to accelerated ions in the presence or absence of oxygen. Ar, Kr, Xe, Sm, Pb and U ions were used with specific energies between 0.3 and 12 MeV/u. The results demonstrate that the oxygen enhancement ratios (o.e.r.) do not only depend on LET or Z*2/beta 2 but even more so on ion specific energy. The o.e.r.s are always higher with greater E/m values pointing to the importance of delta-electron action.  相似文献   

18.
Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.  相似文献   

19.
Ionizing radiation-induced bystander effects, commonly observed in cell populations exposed to high-linear energy transfer (LET) radiations, are initiated by damage to a cellular molecule which then gives rise to a toxic signal exported to neighboring cells not directly hit by radiation. A major goal in studies of this phenomenon is the identification of this initial radiation-induced lesion. Liquid water being the main constituent of biological matter, reactive species produced by water radiolysis in the cellular environment are likely to be major contributors to the induction of this lesion. In this context, the radiation track structure is of crucial importance in specifying the precise location and identity of all the radiolytic species and their subsequent signaling or damaging effects. We report here Monte Carlo track structure simulations of the radiolysis of liquid water by four different impacting ions 1H+, 4He2+, 12C6+ and 20Ne10+, with the same LET ( approximately 70 keV/ microm). The initial radial distribution profiles of the various water decomposition products (eaq(-), *OH, H*, H2 and H2O2) for the different ions considered are presented and discussed briefly in the context of track structure theory. As an example, the formation and temporal evolution of simulated 24 MeV 4He2+ ion tracks (LET approximately 26 keV/microm) are reported for each radiolytic species from 1 ps to 10 micros. The calculations reveal that the ion track structure is completely lost by approximately 1 micros.  相似文献   

20.
The ability of Ehrlich ascites tumor cells (EAT cells) to repair potentially lethal damage (alpha-PLD) as demonstrated by either an increase in survival after delayed plating or a decrease in survival after treatment with beta-arabinofuranosyladenine (beta-araA) was investigated after exposure to protons, deuterons, 3He, 4He, and heavy ions of various specific energies. A significant amount of repair or fixation was observed after delayed plating or treatment with beta-araA, respectively, in cells that were exposed to protons of 6-21 MeV energy, reflecting mainly variations in the survival curve shoulder width. Four-hour treatment with 80 microM/liter beta-araA resulted in an exponential survival curve for all proton energies tested. A decrease in particle energy increased killing and caused a reduction in Dq without a significant change in D0. The survival curve obtained after exposure of cells to 3.4 MeV protons had only a small shoulder and was only slightly modified by either delayed plating or treatment with beta-araA, suggesting a decrease in the induction rate of alpha-PLD. Similar results were also obtained after exposure to deuterons and 4He ions. The results are interpreted as indicating the importance of the specific particle energy and the delta-electron spectrum in the induction of alpha-PLD. When the results of delayed plating of cells exposed to protons, deuterons, or helium ions were pooled, an exponential relationship between Dq and penumbra radius was indicated. After exposure to 40Ar ions of 18 MeV specific energy, a shouldered survival curve was obtained, and beta-araA significantly enhanced killing by modifying Dq as well as D0, a result that also suggests induction of repairable damage by the delta particles produced and interaction of lesions induced within the core of the ion path with penumbra lesions. Based on these results a model is proposed assuming that alpha-PLD results from interaction, during the course of repair, of pairs of DNA lesions induced within a distance di. The model assumes the existence of a critical separation distance dic, with the property that pairs of lesions induced with separation distance shorter than dic (expressed as number of base pairs) will always be expressed as lethal, and the existence of a maximum separation distance dim, with the property that pairs of lesions induced with separation distance larger than dim will not interact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号