首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
K. VanWinkle-Swift  R. Hoffman  L. Shi    S. Parker 《Genetics》1994,136(3):867-877
Uniparental inheritance of Chlamydomonas chloroplast genes is thought to involve modification of maternal (mt(+)) chloroplast genomes to protect against a nuclease that is activated after gamete fusion. The mating-type limited mtl-1 mutant strain of Chlamydomonas monoica is unable to protect mt(+)-derived chloroplast DNA. Zygotes homozygous for mtl-1 lose all chloroplast DNA and fail to germinate. We have selected for suppression of this zygote-specific lethality, and have obtained 20 mutant strains that produce viable homozygotes despite the continued presence of the mtl-1 allele. Genetic analysis indicates that the suppressor mutations are all recessive alleles at a single locus (sup-1) which is unlinked to mtl-1. Crosses between sup-1 strains carrying distinctive chloroplast antibiotic resistance markers also show predominantly biparental chloroplast gene transmission. Chloroplast nucleoids of both parental origins (stained with the DNA-specific fluorochrome, DAPI) are retained in the zygotes homozygous for sup-1. The data are compatible with the idea that the sup-1 (suppressor of uniparental inheritance) locus may encode a chloroplast DNA nuclease that is expressed from both parental genomes.  相似文献   

2.
The iso1 gene of Chlamydomonas is involved in sex determination.   总被引:2,自引:0,他引:2       下载免费PDF全文
Sexual differentiation in the heterothallic alga Chlamydomonas reinhardtii is controlled by two mating-type loci, mt+ and mt-, which behave as a pair of alleles but contain different DNA sequences. A mutation in the mt minus-linked imp11 gene has been shown previously to convert a minus gamete into a pseudo-plus gamete that expresses all the plus gametic traits except the few encoded by the mt+ locus. Here we describe the iso1 mutation which is unlinked to the mt- locus but is expressed only in minus gametes (sex-limited expression). A population of minus gametes carrying the iso1 mutation behaves as a mixture of minus and pseudo-plus gametes: the gametes isoagglutinate but they do not fuse to form zygotes. Further analysis reveals that individual gametes express either plus or minus traits: a given cell displays one type of agglutinin (flagellar glycoprotein used for sexual adhesion) and one type of mating structure. The iso1 mutation identifies a gene unlinked to the mating-type locus that is involved in sex determination and the repression of plus-specific genes.  相似文献   

3.
In Chlamydomonas reinhardtii, chloroplast genomes are normally transmitted by the mating type plus (mt+) parent and mitochondrial genomes by the mating type minus (mt-) parent. In this paper we describe three new nuclear mutations, designated mat-3-1 to -3, which are tightly linked to the mt+ allele and permit high transmission of chloroplast genomes from the mt- parent, but have no effect on transmission of mitochondrial genomes. We also show that mat-1, reported by others to be a nuclear mutation linked to mt- which promotes transmission of chloroplast genomes by the mt- parent, is probably a vegetative diploid since it contains both mt+ and mt- alleles. Vegetative diploids behave as if they are mt- with respect to mating, but possess a level of chloroplast gene transmission intermediate between that of haploid mt- and mt+ stocks.  相似文献   

4.
A thin section study of mating Chlamydomonas cell wall-less CW 15 mating type plus (mt+) and mating type minus (mt-) gametes utilized filipin. The results show extensive labeling of mt+ and mt- plasma membranes. No labeling was seen on the mating structure membranes of activated mt+ or mt- gametes. These results indicate that differences exist between the plasma membrane and the mating structure membrane of gametes. If filipin is specific for the 3-beta-OH sterol, ergosterol and/or other Chlamydomonas sterols, then these results imply that the fusing mating structure membranes may be altered or reduced in sterol content. Such lipid specializations may increase local membrane fluidity and thereby facilitate the site-specific cell fusion associated with mating Chlamydomonas gametes.  相似文献   

5.
Impotent mutant strains of Chlamydomonas reinhardi, mating-type (mt) plus, are described that have normal growth and motility but fail to differentiate into normal gametes. Procedures for their isolation and their genetic analysis are described. Five of the imp strains (imp-2, imp-5, imp-l, imp-7, and imp-8) exhibit no flagellar agglutination when mixed with mt- or mt+ gametes and the mutations are shown to be unlinked to the mt locus (with the possible exception of imp-7). Two of the strains (imp-3 and imp-4) carry leaky mutations that affect cell fusion; neither mutation is found by tetrad analysis to be linked to mt or to the other. Cells of the imp-1 strain agglutinate well with mt- gametes and active agglutination continues for up to 48 hours, but cell fusion occurs only very rarely. Analysis of these rare zygotes indicates that imp-1 is closely linked to the mt+ locus, and fine-structural studies reveal that imp-1 gametes produce a mutant mating structure involved in zygotic cell fusion. The development of sexuality in C. reinhardi therefore appears amenable to genetic dissection.  相似文献   

6.
The effect of EDTA on the mating-type-specific agglutinins located on the flagellar surfaces of Chlamydomonas reinhardii gametes was investigated. The mating-type minus (mt-) gametes lost their agglutinability without apparent loss of motility soon after addition of EDTA at low concentrations (1-2 mM). At the same time, the cells released into the medium agglutinins which can elicit agglutinative responses of mating-type plus (mt+) gametes specifically. When EDTA was neutralized with Mg2+ or removed by centrifugation, the mt- cells quickly replaced agglutinins by protein synthesis: the recovery process was sensitive to cycloheximide, but not to tunicamycin. The EDTA-treated mt+ gametes lost their agglutinins much more slowly than the mt- gametes. The replacement of mt+ agglutinins was inhibited by both cycloheximide and tunicamycin.  相似文献   

7.
Membrane differentiations at sites specialized for cell fusion   总被引:13,自引:12,他引:1       下载免费PDF全文
Fusion of plasma membranes between Chlamydomonas reinhardtii gametes has been studied by freeze-fracture electron microscopy of unfixed cells. The putative site of cell fusion developes during gametic differentiation and is recognized in thin sections of unmated gametes as a plaque of dense material subjacent to a sector of the anterior plasma membrane (Goodenough, U.W., and R.L. Weiss. 1975.J. Cell Biol. 67:623-637). The overlying membrane proves to be readily recognized in replicas of unmated gametes as a circular region roughly 500 nm in diameter which is relatively free of "regular" plasma membrane particles on both the P and E fracture faces. The morphology of this region is different for mating-type plus (mt+) and mt- gametes: the few particles present in the center of the mt+ region are distributed asymmetrically and restricted to the P face, while the few particles present in the center of the mt- region are distributed symmetrically in the E face. Each gamete type can be activated for cell fusion by presenting to it isolated flagella of opposite mt. The activated mt+ gamete generates large expanses of particle-cleared membrane as it forms a long fertilization tubule from the mating structure region. In the activated mt- gamete, the E face of the mating structure region is transformed into a central dome of densely clustered particles surrounded by a particle-cleared zone. When mt+ and mt- gametes are mixed together, flagellar agglutination triggeeeds to fuse with an activated mt- region. The fusion lip is seen to develop within the particle-dense central dome. We conclude that these mt- particles play an active role in membrane fusion.  相似文献   

8.
Vanwinkle-Swift KP  Hahn JH 《Genetics》1986,113(3):601-619
The non-Mendelian erythromycin resistance mutation ery-u1 shows bidirectional uniparental inheritance in crosses between homothallic ery-u1 and ery-u1+ strains of Chlamydomonas monoica . This inheritance pattern supports a general model for homothallism invoking intrastrain differentiation into opposite compatible mating types and, further, suggests that non-Mendelian inheritance is under mating-type (mt) control in C. monoica as in heterothallic species. However, the identification of genes expressed or required by one gametic cell type, but not the other, is essential to verify the existence of a regulatory mating-type locus in C. monoica and to understand its role in cell differentiation and sexual development. By screening for a shift from bidirectional to unidirectional transmission of the non-Mendelian ery-u1 marker, a mutant with an apparent mating-type-limited sexual cycle defect was obtained. The responsible mutation, mtl-1, causes a 1000-fold reduction in zygospore germination in populations homozygous for the mutant allele and, approximately, a 50% reduction in germination for heterozygous (mtl-1/mtl-1 +) zygospores. By next screening for strains unable to yield any viable zygospores in a cross to mtl-1, a second putative mating-type-limited mutant, mtl-2, was obtained. The mtl-2 strain, although self-sterile, mates efficiently with mtl-2+ strains and shows a unidirectional uniparental pattern of inheritance for the ery-u1 cytoplasmic marker, similar to that observed for crosses involving mtl-1. Genetic analysis indicates that mtl-1 and mtl-2 define unique unlinked Mendelian loci and that the sexual cycle defects of reduced germination (mtl-1) or self-sterility (mtl-2) cosegregate with the effect on ery-u1 cytoplasmic gene transmission. By analogy to C. reinhardtii, the mtl-1 and mtl-2 phenotypes can be explained if the expression of these gene loci is limited to the mt+ gametic cell type, or if the wild-type alleles at these loci are required for the normal formation and/or functioning of mt + gametes only.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2449-2456
During the mating reaction (fertilization) in the biflagellated alga, Chlamydomonas reinhardtii, mt+ and mt- gametes adhere to each other via their flagella and subsequently fuse to form quadriflagellated zygotes. In the studies reported here, we describe a monoclonal antibody directed against an mt+ flagellar surface molecule. The antibody blocks the adhesiveness of mt+ gametes, isolated mt+ flagella, and detergent extracts thereof. It has no effect on mt- gametes. Cyanogen bromide- activated Sepharose beads derivatized with the antibody bind only mt+ gametes; mt- gametes and mt+ and mt- vegetative cells are unreactive with the derivatized beads. The interaction of mt+ gametes with the beads is dynamic and cells continuously bind, detach, and rebind to the beads. Surprisingly, antibody-derivatized beads that have been incubated with mt+ gametes acquire the ability to bind mt- gametes. Moreover, extraction of the preincubated beads with detergents releases active mt+ adhesion molecules. The evidence suggests that binding of the antibody to the flagellar surface adhesion molecules causes their release from the flagellar surface, possibly mimicking the normal mechanism of flagellar de-adhesion.  相似文献   

10.
Cell fusion between mating type plus (mt+) and minus (mt-) gametes of Chlamydomonas reinhardtii is analyzed structurally and subjected to experimental manipulation. Cell wall lysis, a necessary prelude to fusion, is shown to require flagellar agglutination between competent gametes; glutaraldehyde-fixed gametes ("corpses") of one mating type will elicit both agglutination and cell wall lysis in the opposite mating type, whereas nonagglutinating impotent (imp) mutant strains are without effect. The fusion process is mediated by a narrow fertilization tubule which extends from the mt+ gamete and establishes contact with the mt- gamete. Formation of the tubule requires the "activation" of a specialized mating structure associated with the ml+ cell membrane; activation causes microfilaments to polymerize from the mating structure into the growing fertilization tubule. Mating structure activation is shown to depend on gametic flagellar agglutination; isoagglutination mediated by the lectin concanavalin A has no effect. Gametes carrying the imp-l mt+ mutation are able to agglutinate but not fuse with mt- cells; the imp-l gametes are shown to have structurally defective mating structures that do not generate microfilaments in response to gametic agglutination.  相似文献   

11.
Sexual fusion between plus and minus gametes of the unicellular green alga Chlamydomonas reinhardtii entails adhesion between plus-specific and minus-specific "fringe" proteins displayed on the plasma membrane of gametic mating structures. We report the identification of the gene (fus1) encoding the plus fringe glycoprotein, which resides in a unique domain of the mating-type plus (mt+) locus, and which was identified by transposon insertions in three fusion-defective mutant strains. Transformation with fus1+ restores fringe and fusion competence to these mutants and to the pseudo-plus mutant imp11 mt-, defective in minus differentiation. The fus1 gene is remarkable in lacking the codon bias found in all other nuclear genes of C. reinhardtii.  相似文献   

12.
The phototactic behavior of Chlamydomonas eugametos gametes and vis-à-vis pairs was quantitated using a fully automated, computer-controlled microvideo image analysis system. Two different mt- (mating type minus) and one mt+ (mating type plus) strain, together with the two combinations of pairs were studied. One mt- strain of dark-adapted gametes was non-phototactic while the others were positively phototactic at all effective intensities of white light. The mt+ strain exhibited one of the strongest positive responses that has so far been reported in algae (r-values greater than 0.7). After sexual fusion, the mt+ cell powers the swimming vis-à-vis pair. Its phototactic behavior reversed on fusion, with the pairs swimming away from all effective light intensities, irrespective of whether its partner was formerly phototactic or not. However, when adapted to the dark for an hour or more, vis-à-vis pairs swam positively to the light. The ecological consequence could be that pairs settle and develop into zygotes under intermediate light intensities or at light-dark interfaces.  相似文献   

13.
R Sager  C Grabowy  H Sano 《Cell》1981,24(1):41-47
The inheritance of chloroplast genes in Chlamydomonas is regulated by methylation of chloroplast DNA during gametogenesis. The wild-type pattern of maternal inheritance results from the methylation of chloroplast DNA in female (mt+) but not in male (mt-) gametes, leading to preferential degradation of chloroplast DNA of male origin in zygotes. This paper describes the distribution of 5-methyl cytosine residues in restriction fragments of chloroplast DNA sampled during gametogenesis by two methods: ethidium bromide staining of agarose gels, and binding of antibody directed against 5-methyl cytosine onto restriction fragments blotted to nitro-cellulose paper. Methylated cytosines are located in most if not all Eco RI and Msp I fragments, but the extent of methylation is not proportional to fragment size. The mat-1 mutation carried by males converts maternal inheritance. Chloroplast DNA of male gametes carrying the mat-1 mutation becomes methylated during gametogenesis. This methylation protects against restriction enzyme-promoted degradation in zygotes, as shown by physical data demonstrating the transmission to progeny of chloroplast genes carried on chloroplast DNA of the mat-1 male parent. Thus the mat-1 gene, which is linked to the mating-type locus, determines whether or not methylation of chloroplast DNA will occur in males during gametogenesis.  相似文献   

14.
The molecular mechanisms of the defining event in fertilization, gamete fusion, remain poorly understood. The FUS1 gene in the unicellular, biflagellated green alga Chlamydomonas is one of the few sex-specific eukaryotic genes shown by genetic analysis to be essential for gamete fusion during fertilization. In Chlamydomonas, adhesion and fusion of the plasma membranes of activated mt+ and mt- gametes is accomplished via specialized fusion organelles called mating structures. Herein, we identify the endogenous Fus1 protein, test the idea that Fus1 is at the site of fusion, and identify the step in fusion that requires Fus1. Our results show that Fus1 is a approximately 95-kDa protein present on the external surface of both unactivated and activated mt+ gametes. Bioassays indicate that adhesion between mating type plus and mating type minus fusion organelles requires Fus1 and that Fus1 is functional only after gamete activation. Finally, immunofluorescence demonstrates that the Fus1 protein is present as an apical patch on unactivated gametes and redistributes during gamete activation over the entire surface of the microvillous-like activated plus mating structure, the fertilization tubule. Thus, Fus1 is present on mt+ gametes at the site of cell-cell fusion and essential for an early step in the fusion process.  相似文献   

15.
Antisera raised against vegetative and gametic flagella of Chlamydomonas reinhardi have been used to probe dynamic properties of the flagellar membranes. The antisera, which agglutinate cells via their flagella, associate with antigens that are present on both vegetative and gametic membranes and on membranes of both mating types (mt+ and mt-). Gametic cells respond to antibody presentation very differently from vegetative cells, mobilizing even high concentrations of antibody towards the flagellar tips; the possibility is discussed that such "tipping" ability reflects a differentiated gametic property relevant to sexual agglutinability. Gametic cells also respond to antibody agglutination by activating their mating structures, the mt+ reaction involving a rapid polymerization of microfilaments. Several impotent mt+ mutant strains that fail to agglutinate sexually are also activated by the antisera and procede to form zygotes with normal mt- gametes. Fusion does not occur between activated cells of like mating type. Monovalent (Fab) preparations of the antibody fail to activate mt+ gametes, suggesting that the cross-linking properties of the antisera are essential for their ability to mimic, or bypass, sexual agglutination.  相似文献   

16.
The assembly and maintenance of eucaryotic flagella and cilia depend on the microtubule motor, kinesin-II. This plus end-directed motor carries intraflagellar transport particles from the base to the tip of the organelle, where structural components of the axoneme are assembled. Here we test the idea that kinesin-II also is essential for signal transduction. When mating-type plus (mt+) and mating-type minus (mt-) gametes of the unicellular green alga Chlamydomonas are mixed together, binding interactions between mt+ and mt- flagellar adhesion molecules, the agglutinins, initiate a signaling pathway that leads to increases in intracellular cAMP, gamete activation, and zygote formation. A critical question in Chlamydomonas fertilization has been how agglutinin interactions are coupled to increases in intracellular cAMP. Recently, fla10 gametes with a temperature-sensitive defect in FLA10 kinesin-II were found to not form zygotes at the restrictive temperature (32 degrees C). We found that, although the rates and extents of flagellar adhesion in fla10 gametes at 32 degrees C are indistinguishable from wild-type gametes, the cells do not undergo gamete activation. On the other hand, fla10 gametes at 32 degrees C regulated agglutinin location and underwent gamete fusion when the cells were incubated in dibutyryl cAMP, indicating that their capacity to respond to the cAMP signal was intact. We show that the cellular defect in the fla10 gametes at 32 degrees C is a failure to undergo increases in cAMP during flagella adhesion. Thus, in addition to being essential for assembly and maintenance of the structural components of flagella, kinesin-II/intraflagellar transport plays a role in sensory transduction in these organelles.  相似文献   

17.
Monoclonal antibodies were raised against the mt- sexual agglutinin of Chlamydomonas eugametos gametes. Those that blocked the agglutination site were selected. They were divided into two classes dependent upon whether they gave a weak (class A) or clear positive (class B) reaction with mt- flagellar membranes in an ELISA and an indirect immunofluorescence test using glutaraldehyde-fixed mt- gametes. Class A antibodies were shown to be specific for the agglutinin in an extract of mt- gametes, based on results from immunoblotting, immunoprecipitation, affinity chromatography, and the absence of a reaction with nonagglutinable cells. Surprisingly, class A mAbs also recognized two mt+ glycoproteins, one of which is the mt+ agglutinin. Class B antibodies were shown to bind to several glycoproteins in both mt- and mt+ gametes, including the mt- agglutinin. Fab fragments from class A mAbs blocked the sexual agglutination process, but those from class B did not, even though the parent antibody did. We conclude that the class A epitope lies in or close to the agglutination site of the mt- agglutinin, whereas the class B epitope lies elsewhere on the molecule. We also conclude that the mt- agglutinin is the only component on the mt- flagellar surface directly involved in agglutination. Class A mAbs were found to elicit several reactions displayed by the mt+ agglutinin. They bound to the mt- agglutinin on gamete flagella and induced most of the reactions typical of sexual agglutination, with the exception of flagellar tip activation. None of these reactions was induced by Fab fragments. High concentrations of class A mAbs completely repressed the sexual competence of live mt- gametes, but low concentrations stimulated cell fusion.  相似文献   

18.
Interactions between adhesion molecules, agglutinins, on the surfaces of the flagella of mt+ and mt- gametes in Chlamydomonas rapidly generate a sexual signal, mediated by cAMP, that prepares the cells for fusion to form a zygote. The mechanism that couples agglutinin interactions to increased cellular levels of cAMP is unknown. In previous studies on the adenylyl cyclase in flagella of a single mating type (i.e., non-adhering flagella) we presented evidence that the gametic form of the enzyme, but not the vegetative form, was regulated by phosphorylation and dephosphorylation (Zhang, Y., E. M. Ross, and W. J. Snell. 1991. J. Biol. Chem. 266:22954-22959; Zhang, Y., and W. J. Snell. 1993. J. Biol. Chem. 268:1786-1791). In the present report we describe studies on regulation of flagellar adenylyl cyclase during adhesion in a cell-free system. The results show that the activity of gametic flagellar adenylyl cyclase is regulated by adhesion in vitro between flagella isolated from mt+ and mt- gametes. After mixing mt+ and mt- flagella together for 15 s in vitro, adenylyl cyclase activity was increased two- to threefold compared to that of the non-mixed (non- adhering), control flagella. This indicates that the regulation of gametic flagellar adenylyl cyclase during the early steps of fertilization is not mediated by signals from the cell body, but is a direct and primary response to interactions between mt+ and mt- agglutinins. By use of this in vitro assay, we discovered that 50 nM staurosporine (a protein kinase inhibitor) blocked adhesion-induced activation of adenylyl cyclase in vitro, while it had no effect on adenylyl cyclase activity of non-adhering gametic flagella. This same low concentration of staurosporine also inhibited adhesion-induced increases in vivo in cellular cAMP and blocked subsequent cellular responses to adhesion. Taken together, our results indicate that flagellar adenylyl cyclase in Chlamydomonas gametes is coupled to interactions between mt+ and mt- agglutinins by a staurosporine- sensitive activity, probably a protein kinase.  相似文献   

19.
Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar protein was consistently phosphorylated in an in vitro assay in flagella isolated from nonadhering mt+ and mt- gametes, but not in flagella isolated from mt+ and mt- gametes that had been adhering for 1 min. Although the 48-kDa protein was present in the flagella isolated from adhering gametes, we demonstrate that its protein kinase was inactivated by flagellar adhesion. Immunoblot analysis and inhibitor studies indicate that the 48-kDa protein in nonadhering gametes is phosphorylated by a protein tyrosine kinase. In vivo experiments showing that the protein tyrosine phosphatase inhibitor sodium orthovanadate inhibits fertilization suggest that protein dephosphorylation may be required for signal transduction. The 48-kDa protein and its protein kinase may be among the first elements of a novel signalling pathway that couples interaction of flagellar adhesion molecules to gamete activation.  相似文献   

20.
Although vegetative cells, gametes, and zygotes of the biflagellated alga Chlamydomonas bear flagella, only the flagella of mt+ and mt- gametes are adhesive. The molecules responsible for adhesiveness, mt+ and mt- agglutinins, are long rod-shaped glycoproteins displayed on the flagellar membrane. These flagellar agglutinins, which gametes use both as adhesion and signaling molecules during the early events of fertilization, are lost from the flagella during adhesion. Flagellar adhesiveness can be maintained, however, by recruitment and activation of preexisting, inactive agglutinins from the plasma membrane of the cell body (Hunnicutt et al, 1990, J. Cell Biol. 111, 1605-1616) unless the gametes of opposite mating types fuse to form zygotes. Upon cell fusion, flagellar adhesiveness is lost. In the studies presented here, we have employed an in vitro bioassay to measure agglutinins in both cell bodies and flagella at various times during gametogenesis, during fertilization, and after zygote-formation. By use of the bioassay, which can detect agglutinins that are functionally inactive in vivo, we found that vegetative cells are devoid of agglutinins. These adhesion molecules appear only after gametogenesis is underway with the cell body agglutinins appearing first and then the flagellar agglutinins. Surprisingly, 30 min after zygote formation, when the zygotes' flagella are no longer adhesive, the flagellar agglutinin activity detectable with the bioassay remains high. One interpretation of these results is that zygotes continue to recruit agglutinins from the cell body to the flagella, but cell fusion abrogates activation of the agglutinins. Within 45-90 min after fusion both the cell body and flagellar agglutinins are lost and can be detected in the medium. These mechanisms, which render the zygotes nonadhesive to other zygotes and unmated gametes, contribute to the Chlamydomonas equivalent of a block to polyspermy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号