首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cat-Eye syndrome (CES) is a disorder with a variable pattern of multiple congenital anomalies of which coloboma of the iris and anal atresia are the best known. CES is cytogenetically characterised by the presence of an extra bisatellited marker chromosome, which represents an inverted dicentric duplication of a part of chromosome 22 (inv dup(22)). We report on three CES-patients who carry an inv dup(22) diagnosed with FISH studies. They show remarkable phenotypic variability. The cause of this variability is unknown. Furthermore, we review clinical features of 71 reported patients. Only 41% of the CES-patients have the combination of iris coloboma, anal anomalies and pre-auricular anomalies. Therefore, almost 60% of the CES-patients are hard to recognize by their phenotype alone. Mild to moderate mental retardation was found in 32% (16/50) of the cases. Mental retardation occurs more frequently in male CES-patients. There is no apparent phenotypic difference between mentally retarded and mentally normal CES-patients.  相似文献   

2.
We present a male infant with preauricular skin tags and pits, downslanting palpebral fissures, hypertelorism, ectopic anus, hypospadias, and hypoplastic left heart syndrome. The clinical features in our patient show phenotypic overlap with the cat eye syndrome, as illustrated by the review of 105 reported cases. Cytogenetic analysis revealed a supernumerary marker chromosome, which was identified by microdissection and fluorescence in situ hybridization as an isodicentric chromosome 22(pter --> q11.2::q11.2 --> pter). It was proved with probes specific for the cat eye syndrome critical region that this region was present in quadruplicate in the propositus. We conclude that CES is characterized by large phenotypic variability, ranging from near normal to severe malformations, as reflected in the neurodevelopmental outcome. Preauricular skin tags and/or pits are the most consistent features, and suggest the presence of a supernumerary bisatellited marker chromosome 22 derived from duplication of the CES critical region.  相似文献   

3.
Cat eye syndrome (CES) is associated with a supernumerary bisatellited marker chromosome which is derived from duplicated regions of 22pter-22q11.2. In this study we have used dosage and RFLP analyses on 10 CES patients with marker chromosomes, by using probes to five loci mapped to 22q11.2. The sequences recognized by the probes D22S9, D22S43, and D22S57 are in four copies in all patients, but the sequences at the more distal loci, D22S36 and D22S75, are duplicated only in some individuals. D22S36 is present in three copies in some individuals, and D22S75 is present in two copies in the majority of cases. Only three individuals have a duplication of the most distal locus examined (D22S75), and these individuals have the largest marker chromosomes identified in this study. From the dosage analysis it was found that the marker chromosomes are variable in size and can be asymmetric in nature. There is no obvious correlation between the severity of the phenotype and the size of the duplication. The distal boundary of the CES critical region (D22S36) is proximal to that of DiGeorge syndrome, a contiguous-gene-deletion syndrome of 22q11.2.  相似文献   

4.
BACKGROUND Cat-Eye syndrome (CES) with teratoma has not been previously reported. We present the clinical and molecular findings of a 9-month-old girl with features of CES and also a palpable midline neck mass proved to be an extragonadal mature teratoma, additionally characterized by array comparative genomic hybridization (aCGH). RESULTS High resolution oligonucleotide-based aCGH confirmed that the supernumerary marker chromosome (SMC) derived from chromosome 22, as was indicated by molecular cytogenetic analysis with fluorescence in situ hybridization (FISH). Additionally, aCGH clarified the size, breakpoints, and gene content of the duplication (dup 22q11.1q11.21; size:1.6 Mb; breakpoints: 15,438,946-17,041,773; hg18). The teratoma tissue was also tested with aCGH, in which the CES duplication was not found, but the analysis revealed three aberrations: del Xp22.3 (108,864-2788,689; 2.7 Mb hg18), dup Yp11.2 (6688,491-7340,982; 0.65 Mb, hg18), and dup Yq11.2q11.23 (12,570,853-27,177,133; 14.61 Mb, hg18). These results indicated 46 XY (male) karyotype of the teratoma tissue, making this the second report of mature extragonadal teratoma in a female neonate, probably deriving from an included dizygotic twin of opposite sex (fetus in fetu). CONCLUSIONS Our findings extend the phenotypic spectrum of CES syndrome, a disorder with clinical variability, pointing out specific dosage-sensitive genes that might contribute to specific phenotypic features.  相似文献   

5.
BACKGROUND Cat‐Eye syndrome (CES) with teratoma has not been previously reported. We present the clinical and molecular findings of a 9‐month‐old girl with features of CES and also a palpable midline neck mass proved to be an extragonadal mature teratoma, additionally characterized by array comparative genomic hybridization (aCGH). RESULTS High resolution oligonucleotide‐based aCGH confirmed that the supernumerary marker chromosome (SMC) derived from chromosome 22, as was indicated by molecular cytogenetic analysis with fluorescence in situ hybridization (FISH). Additionally, aCGH clarified the size, breakpoints, and gene content of the duplication (dup 22q11.1q11.21; size:1.6 Mb; breakpoints: 15,438,946‐17,041,773; hg18). The teratoma tissue was also tested with aCGH, in which the CES duplication was not found, but the analysis revealed three aberrations: del Xp22.3 (108,864‐2788,689; 2.7 Mb hg18), dup Yp11.2 (6688,491‐7340,982; 0.65 Mb, hg18), and dup Yq11.2q11.23 (12,570,853‐27,177,133; 14.61 Mb, hg18). These results indicated 46 XY (male) karyotype of the teratoma tissue, making this the second report of mature extragonadal teratoma in a female neonate, probably deriving from an included dizygotic twin of opposite sex (fetus in fetu). CONCLUSIONS Our findings extend the phenotypic spectrum of CES syndrome, a disorder with clinical variability, pointing out specific dosage‐sensitive genes that might contribute to specific phenotypic features. Birth Defects Research (Part A) 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We report a female infant with partial trisomy 8p (8p11.2-->pter) and deletion of 13q (13q32-->qter). She was born with mild hypotonia, intrauterine growth retardation, microcephaly, micrognathia, large low set ears, pectus excavatum, anteriorly placed anus, and bilateral clinodactyly. Echocardiography showed left ventricular hypertrophy, bicuspid aortic valve, dilatation of the aorta and pulmonary artery, and prolapse of atrio-venticular valve leaflets. Cytogenetic investigation of her sister and her father showed that the altered region resulted from a balanced translocation between the part of the long arm of chromosome 13 and short arm of chromosome 8. In partial trisomy 8p, the clinical picture of the patients comprises hypotonia, structural brain abnormalities, facial anomalies including a large mouth with a thin upper lip, a high arched palate, a broad nasal bridge, an abnormal maxilla or mandible, malformed, low set ears, and orthopedic anomalies. Although patients with proximal deletions of 13q that do not extend into band q32 have mild to moderate mental and growth delays with variable minor anomalies, patients with more distal deletions including at least part of band q32 usually have major malformations such as retinoblastoma, mental-motor growth retardation, malformation of brain and heart, anal atresia, and anomalies of the face and limbs. To our knowledge partial trisomy 8p and partial monosomy of 13q have not been reported previously in the same person.  相似文献   

7.
Cat eye syndrome (CES) is typically associated with a supernumerary bisatellited marker chromosome (inv dup 22pter-22q11.2) resulting in four copies of this region. We describe an individual showing the inheritance of a minute supernumerary double ring chromosome 22, which resulted in expression of all cardinal features of CES. The size of the ring was determined by DNA dosage analysis and FISH analysis for five loci mapping to 22q11.2. The probes to the loci D22S9, D22S43, and ATP6E were present in four copies, whereas D22S57 and D22S181 were present in two copies. This finding further delineates the distal boundary of the critical region of CES, with ATP6E being the most distal duplicated locus identified. The phenotypically normal father and grandfather of the patient each had a small supernumerary ring chromosome and demonstrated three copies for the loci D22S9, D22S43, and ATP6E. Although three copies of this region have been reported in other cases with CES features, it is possible that the presence of four copies leads to greater susceptibility.  相似文献   

8.
9.
Cat eye syndrome (CES) is associated with a duplication of a segment of human chromosome 22q11.2. Only one gene,ATP6E, has been previously mapped to this duplicated region. We now report the mapping of the human homologue of the apoptotic agonistBidto human chromosome 22 near locus D22S57 in the CES region. Dosage analysis demonstrated thatBIDis located just distal to the CES region critical for the majority of malformations associated with the syndrome (CESCR), as previously defined by a single patient with an unusual supernumerary chromosome. However,BIDremains a good candidate for involvement in CES-related mental impairment, and its overexpression may subtly add to the phenotype of CES patients. Our mapping of murineBidconfirms that the synteny of the CESCR and the 22q11 deletion syndrome critical region immediately telomeric on human chromosome 22 is not conserved in mice.Bidand adjacent geneAtp6ewere found to map to mousechromosome 6, while the region homologous to the DGSCR is known to map to mouse chromosome 16.  相似文献   

10.
11.
Cat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported. A review on short stature and growth hormone deficiency in cat eye syndrome is conducted.  相似文献   

12.
We describe a female child with a ring chromosome 3, found after investigation for short stature. Her karyotype was 46,XX,r(3)(p26-q29). Her phenotype mainly differs from that of the nine patients previously reported with ring chromosome 3, by the presence of hypoplastic right thumb and bilateral coloboma of the iris.  相似文献   

13.
We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1–q11.21 encompassing CECR1CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22).  相似文献   

14.
Supernumerary marker chromosomes (SMC) are heterogeneous group of chromosomes which are reported in variable phenotypes. Approximately 70% originate from acrocentric chromosomes. Here we report a couple with recurrent miscarriages and a SMC originating from an acrocentric chromosome. The cytogenetic analysis of the husband revealed a karyotype of 47,XY+marker whereas the wife had a normal karyotype. Analysis of SMC with C-banding showed the presence of a big centromere in the center and silver staining showed prominent satellites on both sides of the marker. Apparently, microarray analysis revealed a 2.1 Mb duplication of 15q11.2 region but molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) with whole chromosome paint (WCP) 15 showed that the SMC is not of chromosome 15 origin. Subsequently, FISH with centromere 22 identified the SMC to originate from chromosome 22 which was also confirmed by WCP 22. Additional dual FISH with centromere 22 and Acro-p-arm probes confirmed the centromere 22 and satellites on the SMC. Further fine mapping of the marker with Bacterial Artificial Chromosome (BAC) clones; two on chromosome 22 and four on chromosome 15 determined the marker to possess only centromere 22 sequences and that the duplication 15 exists directly on chromosome 15. In our study, we had identified and characterized a SMC showing inversion duplication 22(p11.1) combined with a direct tandem duplication of 15q11.2. The possible genotype–phenotype in relation with the two rearrangements is discussed.  相似文献   

15.
We report on a 16-month-old boy presenting with psychomotor retardation, craniofacial anomalies and severe vision deficit. Analysis of GTG-banded chromosomes showed that the patient had extra chromosomal material in the long arm of one chromosome 20. This chromosome aberration was further characterized with FISH using a chromosome 20 specific paint and band-specific probes. A partial trisomy 20q was shown to be present, the karyotype being 46, XY, dup (20) (q11.2q12). The cytogenetic and clinical findings are compared with cases previously reported in the literature.  相似文献   

16.
17.
Colobomata represent visually impairing ocular closure defects that are associated with a diverse range of developmental anomalies. Characterization of a chromosome 8q21.2-q22.1 segmental deletion in a patient with chorioretinal coloboma revealed elements of nonallelic homologous recombination and nonhomologous end joining. This genomic architecture extends the range of chromosomal rearrangements associated with human disease and indicates that a broader spectrum of human chromosomal rearrangements may use coupled homologous and nonhomologous mechanisms. We also demonstrate that the segmental deletion encompasses GDF6, encoding a member of the bone-morphogenetic protein family, and that inhibition of gdf6a in a model organism accurately recapitulates the proband's phenotype. The spectrum of disorders generated by morpholino inhibition and the more severe defects (microphthalmia and anophthalmia) observed at higher doses illustrate the key role of GDF6 in ocular development. These results underscore the value of integrated clinical and molecular investigation of patients with chromosomal anomalies.  相似文献   

18.
Microduplications of 22q11.2 have been recently characterized as a new genomic duplication syndrome showing an extremely variable phenotype ranging from normal or mild learning disability to multiple congenital defects and sharing some overlapping features with DiGeorge/Velocardiofacial syndrome (DGS/VCFS). We report on the prenatal diagnosis of a 22q11.2 microduplication in a fetus with normal development that was referred for chromosomal analysis at 17 weeks of gestation because of advanced maternal age. Pregnancy was the result of an IVF-ICSI attempt after 4 years of infertility, mainly due to severe oligoasthenoteratospermia of the father. Amniocentesis was undertaken and cytogenetic analysis revealed an apparently normal male karyotype. Multiple Ligation-dependent Probe Amplification (MLPA) revealed a microduplication in the 22q11.2 chromosome region. Parental analysis showed that the 22q11.2 microduplication has been inherited from the otherwise healthy mother. Analysis with high resolution array-CGH showed that the size of the microduplication is 2.5 Mb and revealed the genes that are duplicated, including the TBX1 gene. The parents elected to continue with the pregnancy and the infant is now five months old and shows normal development.  相似文献   

19.
The presence of highly homologous sequences, known as low copy repeats, predisposes for unequal recombination within the 22q11 region. This can lead to genomic imbalances associated with several known genetic disorders. We report here a developmentally delayed patient carrying different rearrangements on both chromosome 22 homologues, including a previously unreported rearrangement within the 22q11 region. One homologue carries a deletion of the proximal part of chromosome band 22q11. To our knowledge, a ‘pure’ deletion of this region has not been described previously. Four copies of this 22q11 region, however, are associated with Cat eye syndrome (CES). While the phenotypic impact of this deletion is unclear, familial investigation revealed five normal relatives carrying this deletion, suggesting that haplo-insufficiency of the CES region has little clinical relevance. The other chromosome 22 homologue carries a duplication of the Velocardiofacial/DiGeorge syndrome (VCFS/DGS) region. In addition, a previously undescribed deletion of 22q12.1, located in a relatively gene-poor region, was identified. As the clinical features of patients suffering from a duplication of the VCFS/DGS region have proven to be extremely variable, it is impossible to postulate as to the contribution of the 22q12.1 deletion to the phenotype of the patient. Additional patients with a deletion within this region are needed to establish the consequences of this copy number alteration. This study highlights the value of using different genomic approaches to unravel chromosomal alterations in order to study their phenotypic impact.  相似文献   

20.
Choi JH  Shin YL  Kim GH  Seo EJ  Kim Y  Park IS  Yoo HW 《Hormone research》2005,63(6):294-299
BACKGROUND: Endocrine abnormalities, including hypocalcemia, thyroid dysfunction, and short stature, are associated with chromosome 22q11.2 microdeletion syndrome. This study was undertaken to examine the frequencies and clinical features of endocrine abnormalities in patients with 22q11.2 microdeletion syndrome. METHODS: We analyzed 61 patients with 22q11.2 microdeletion syndrome diagnosed based on the verification of microdeletion by fluorescent in situ hybridization (FISH) using a probe of the DiGeorge syndrome critical region (TUPLE1) at 22q11.2 and a control probe, ARSA at 22q13. Serum total calcium, phosphorus, and intact parathyroid hormone (PTH) levels were measured, thyroid function test was performed, and serum IGF-1 and IGFBP-3 levels were also estimated. Height and weight of patients were compared with individual chronological ages. RESULTS: Hypocalcemia was found in 20 patients (32.8%), and overt hypoparathyroidism in 8 (13.1%). Two patients (3.3%) showed autoimmune thyroid diseases, 1 each with Graves' disease and Hashimoto thyroiditis. Ten patients (16.4%) were below the third percentile in height, but the serum IGF-1 level was normal in 9 out of these 10 patients. CONCLUSION: Our findings show that patients with chromosome 22q11.2 microdeletion syndrome present with variable endocrine manifestations and variable clinical phenotypes. In addition to FISH analysis, careful endocrine evaluations are required in patients with this microdeletion syndrome, particularly for those with hypoparathyroidism or thyroid dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号