首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose two four-base related 2D curves of DNA primary sequences (termed as F-B curves) and their corresponding single-base related 2D curves (termed as A-related, G-related, T-related and C-related curves). The constructions of these graphical curves are based on the assignments of individual base to four different sinusoidal (or tangent) functions; then by connecting all these points on these four sinusoidal (tangent) functions, we can get the F-B curves; similarly, by connecting the points on each of the four sinusoidal (tangent) functions, we get the single-base related 2D curves. The proposed 2D curves are all strictly non degenerate. Then, a 8-component characteristic vector is constructed to compare similarity among DNA sequences from different species based on a normalized geometrical centers of the proposed curves. As examples, we examine similarity among the coding sequences of the first exon of beta-globin gene from eleven species, similarity of cDNA sequences of beta-globin gene from eight species, and similarity of the whole mitochondrial genomes of 18 eutherian mammals. The experimental results well demonstrate the effectiveness of the proposed method.  相似文献   

2.
3.
We consider a novel 2-D graphical representation of DNA sequences according to chemical structures of bases, reflecting distribution of bases with different chemical structure, preserving information on sequential adjacency of bases, and allowing numerical characterization. The representation avoids loss of information accompanying alternative 2-D representations in which the curve standing for DNA overlaps and intersects itself. Based on this representation we present a numerical characterization approach by the leading eigenvalues of the matrices associated with the DNA sequences. The utility of the approach is illustrated on the coding sequences of the first exon of human beta-globin gene.  相似文献   

4.

Background

Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use.

Methodology/Principal Findings

We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown.

Conclusions/Significance

This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages.  相似文献   

5.
Cot curves derived from renaturation kinetics of sheared denatured DNA indicated that the genome of six populations representing the four most common root-knot nematode species (Meloidogyne incognita, M. arenaria, M. javanica, and M. hapla) is composed of 20% repetitive and 80% nonrepetitive sequences of DNA. Cot curves were almost identical, indicating that all populations had a haploid genome of approximately the same size. Calculations from an average Cot curve gave an estimate of 0.51 x 108 nucleotide base pairs for the haploid genome of the four Meloidogyne species. This genome is about 12-13 times larger than the genome of the E. coli strain used as a control.  相似文献   

6.
The purpose of this work is to determine the most frequent short sequences in non-coding DNA. They may play a role in maintaining the structure and function of eukaryotic chromosomes. We present a simple method for the detection and analysis of such sequences in several genomes, including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. We also study two chromosomes of man and mouse with a length similar to the whole genomes of the other species. We provide a list of the most common sequences of 9–14 bases in each genome. As expected, they are present in human Alu sequences. Our programs may also give a graph and a list of their position in the genome. Detection of clusters is also possible. In most cases, these sequences contain few alternating regions. Their intrinsic structure and their influence on nucleosome formation are not known. In particular, we have found new features of short sequences in C. elegans, which are distributed in heterogeneous clusters. They appear as punctuation marks in the chromosomes. Such clusters are not found in either A. thaliana or D. melanogaster. We discuss the possibility that they play a role in centromere function and homolog recognition in meiosis.  相似文献   

7.
Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass.  相似文献   

8.
This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T. The photosynthesis gene cluster is located within a ~73 kb AseI genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R.sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC=cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.  相似文献   

9.
The degree of similarity of DNA sequences can be concluded according to the comparison of DNA sequences, which helps to speculate their relationship in respect of the structure, function and evolution. In this paper, we introduce the fundamental of the weighted relative entropy based on 2-step Markov Model to compare DNA sequences. The DNA sequence, consisted of four characters A, T, C, G, can be considered as a Markov chain. By taking state space I = {A, T, C, G} and describe the DNA sequences with 2-step transition probability matrix we can get the eigenvalue of the DNA sequence to define the similarity metric. Therefore, we find a new method to compare the DNA sequences, which is used to classify chromosomes DNA sequences obtained from 30 species. The phylogenetic tree built by the alignment-free method of the distance matrix resulted from the weighted relative entropy has clearer and more accurate division.  相似文献   

10.
DNA sequencing has resulted in an abundance of data on DNA sequences for various species. Hence, the characterization and comparison of sequences become more important but still difficult tasks. In this paper, we first give a 2-D ladderlike graphical representation for the characteristic sequences of a DNA sequence, and then construct a 3-component vector, in which the normalized ALE-indices extracted from such three 2-D graphs via D/D matrices are individual components, to characterize the DNA sequence. The examination of similarities/dissimilarities among sequences of the beta-globin genes of different species illustrates the utility of the approach.  相似文献   

11.
Dong W  Liu J  Yu J  Wang L  Zhou S 《PloS one》2012,7(4):e35071

Background

At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species.

Methodology/Principal Findings

We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC, petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC, trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species.

Significance/Conclusions

Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding.  相似文献   

12.
13.
DNA barcoding has become one of the most important techniques in plant species identification. Successful application of this technology is dependent on the availability of reference database of high species coverage. Unfortunately, there are experimental and data processing challenges to construct such a library within a short time. Here, we present our solutions to these challenges. We sequenced six conventional DNA barcode fragments (ITS1, ITS2, matK1, matK2, rbcL1, and rbcL2) of 380 flowering plants on next‐generation sequencing (NGS) platforms (Illumina Hiseq 2500 and Ion Torrent S5) and the Sanger sequencing platform. After comparing the sequencing depths, read lengths, base qualities, and base accuracies, we conclude that Illumina Hiseq2500 PE250 run is suitable for conventional DNA barcoding. We developed a new “Cotu” method to create consensus sequences from NGS reads for longer output sequences and more reliable bases than the other three methods. Step‐by‐step instructions to our method are provided. By using high‐throughput machines (PCR and NGS), labeling PCR, and the Cotu method, it is possible to significantly reduce the cost and labor investments for DNA barcoding. A regional or even global DNA barcoding reference library with high species coverage is likely to be constructed in a few years.  相似文献   

14.
Satellite DNA sequences in Drosophila virilis   总被引:24,自引:0,他引:24  
  相似文献   

15.

Background

DNA barcoding based on the mitochondrial cytochrome oxidase subunit I gene (cox1 or COI) has been successful in species identification across a wide array of taxa but in some cases failed to delimit the species boundaries of closely allied allopatric species or of hybridising sister species.

Methodology/Principal Findings

In this study we extend the sample size of prior studies in birds for cox1 (2776 sequences, 756 species) and target especially species that are known to occur parapatrically, and/or are known to hybridise, on a Holarctic scale. In order to obtain a larger set of taxa (altogether 2719 species), we include also DNA sequences of two other mitochondrial genes: cytochrome b (cob) (4614 sequences, 2087 species) and 16S (708 sequences, 498 species). Our results confirm the existence of a wide gap between intra- and interspecies divergences for both cox1 and cob, and indicate that distance-based DNA barcoding provides sufficient information to identify and delineate bird species in 98% of all possible pairwise comparisons. This DNA barcoding gap was not statistically influenced by the number of individuals sequenced per species. However, most of the hybridising parapatric species pairs have average divergences intermediate between intraspecific and interspecific distances for both cox1 and cob.

Conclusions/Significance

DNA barcoding, if used as a tool for species discovery, would thus fail to identify hybridising parapatric species pairs. However, most of them can probably still assigned to known species by character-based approaches, although development of complementary nuclear markers will be necessary to account for mitochondrial introgression in hybridising species.  相似文献   

16.
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple “dialects,” with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.  相似文献   

17.
DNA markers have the potential to be a powerful tool for the molecular study and breeding of agronomic traits of temperate forage grasses, but some of these grasses have only limited sequence information available. We aimed to design highly transferable primer sets by using the abundant sequence information available for related crop species such as wheat and rice. The degree of similarity between the primer sequences of the wheat PCR-based landmark unique gene (PLUG) primer set and the corresponding sequences of rice orthologs was designated as the ??universality index?? (UI). We classified 359 PLUG primer pairs based on their UI values and found that primer pairs with high UI values showed higher successful amplification rates in Festuca and Lolium species than those with low UI values. Based on these results, we designed new primer sets, designated Conserved Three-prime-End Region (COTER) primers, with complete similarity to rice orthologs for eight bases at the 3?? end of each primer. COTER primer sets developed from both tall fescue and wheat showed high transferability in six temperate grasses (mean amplification rates of 95% for tall fescue primers; 79% for wheat primers). This strategy and primer information could also be useful for developing DNA markers for other grass species with little genome information available.  相似文献   

18.
The genus Oryza to which cultivated rice belongs has 24 species (2n?=?24 or 48), representing seven genomes (AA, BB, CC, EE, FF, BBCC and CCDD). The genomic constitution of five of these species is unknown. These five species have been grouped into two species complexes, the tetraploid ridleyi complex (O. ridleyi, O.?longiglumis) and the diploid meyeriana complex (O.?granulata, O. meyeriana, O. indandamanica). To evaluate the genomic structure of these species in terms of divergence at the molecular level vis-à-vis other known genomes of Oryza, we used the total genomic DNA hybridization approach. Total genomic DNA (after restriction digestion) of 79 accessions of 23 Oryza species, 6 related genera, 5 outgroup taxa (2 monocots, 3 dicots) and 6 F1s and BC1s derived from crosses of O.?sativa with wild species were hybridized individually with 32P-labeled total genomic DNA from 12 Oryza species: O. ridleyi, O.?longiglumis, O. granulata, O.?meyeriana, O. brachyantha, O. punctata, O. officinalis, O. eichingeri, O. alta, O. latifolia, O. australiensis, and O.?sativa. The labeled genomic DNAs representing the ridleyi and meyeriana complexes cross-hybridized best to all the accessions of their respective species, less to those representing other genomes of Oryza and related genera, and least to outgroup taxa. In general, the hybridization differential measured in terms of signal intensities was >50-fold under conditions that permit detection of 70–75% homologous sequences, both in the presence and in the absence of O. sativa DNA as competitor. In contrast, when total DNAs representing other Oryza genomes were used as probes, species of the O.?ridleyi and O.?meyeriana complexes did not show any significant cross-hybridization (<5%). These results demonstrate that the genome(s) of both of these complexes are highly diverged and distinct from all other known genomes of Oryza. We, therefore, propose new genomic designations for these two species complexes: GG for the diploid O. meyeriana complex and HHJJ for the allotetraploid O. ridleyi complex. The results also suggest that the uniqueness of these genomes is not restricted to species-specific highly repetitive DNA sequences, but also applies to dispersed sequences present in single or low to moderate copy numbers. Furthermore these appear to share relatively more genome-specific repeat sequences between themselves than with other genomes of rice. The study also demonstrates the potential of total genomic DNA hybridization as a simple but powerful tool, complementary to existing approaches, for ascertaining the genomic makeup of an organism.  相似文献   

19.
The cloning and characterization of the cytoplasmic 7 S RNAs of HeLa cells has provided pure probes to study the organization of the corresponding genomic DNA sequences. Such analysis has shown that the 7 S L and K RNAs are derived from families of middle repetitive DNA (Ullu & Melli, 1982; Ullu et al., 1982). In this work we analyze the evolutionary conservation of these sequences in the RNA and DNA of distantly related species. Hybridization of the 7 S recombinants to the RNA of rodents, birds, amphibians and echinoderms suggests high conservation of these sequences throughout evolution. Southern blot analysis of genomic DNAs from the same species shows the presence of families of repeated sequences homologous to the 7 S recombinants and Alu DNAs in the genomes of the same species. We were unable to hybridize the 7 S probes to the RNAs of Drosophila melanogaster or Dictyostelium discoideum, although sequence(s) homologous to the 7 S L probe were found in the genome of D. discoideum and to both 7 S L and K probes in the genome of D. melanogaster.  相似文献   

20.
Human diphyllobothriosis is caused by at least 14 species of cestodes belonging to the genus Diphyllobothrium. Molecular analysis by sequencing of nuclear and mitochondrial targets identifies some species at inter- and intra-specific level, and helps to reconstruct their phylogenetic relationships. Nevertheless, the suitability of further molecular targets deserves to be widened, and the comparison of samples of different geographical origin could allow their intra-specific characterization, which could also be useful for epidemiological purposes. In this study, we investigated inter- and intra-specific variability among tapeworms of the genus Diphyllobothrium, with focus on Diphyllobothrium latum, originated from Switzerland. Samples were analyzed by comparing the sequences of two nuclear and two mitochondrial DNA targets. We analyzed 27 samples belonging to 4 species (D. latum, Diphyllobothrium nihonkaiense, Diphyllobothrium dendriticum and Diphyllobothrium ditremum), 15 of which isolated from clinical cases (adults and eggs), 2 from wild canines, and 2 from fish of Swiss lakes (plerocercoid larvae); 8 samples of homologous species from other geographic origins were also sequenced and compared with the Swiss ones. Sequences of partial small subunit ribosomal RNA (18S rRNA) gene and partial internal transcribed spacers 1 and 2 (ITS1-2) were not useful even in inter-specific identification, whereas sequences of complete cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cob) genes allowed us to assess inter- and intra-specific variations among the samples. Cox1 and cob could differentiate 3 and 5 haplotypes within the species D. latum. The results are discussed in the light of the anamneses provided by part of the patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号