首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the role of asynchronous and synchronous dispersals on discrete-time two-patch dispersal-linked population models, where the pre-dispersal local patch dynamics are of mixed compensatory and overcompensatory types. Single-species dispersal-linked models behave as single-species single-patch models whenever all pre-dispersal local patch dynamics are compensatory and dispersal is synchronous. However, the dynamics of the corresponding two-patch population model connected by asynchronous dispersal depends on the dispersal rates. The species goes extinct on at least one patch when the asynchronous dispersal rates are high, while it persists when the rates are low. We use numerical simulations to show that in both synchronous and asynchronous mixed compensatory and overcompensatory systems, symmetric and asymmetric dispersals can control and impede the onset of cyclic population oscillations via period-doubling reversal bifurcations. Also, we show that in mixed systems both asynchronous and synchronous dispersals are capable of altering the pre-dispersal local patch dynamics from overcompensatory to compensatory dynamics. Dispersal-linked population models with 'unstructured' overcompensatory pre-dispersal local dynamics connected by synchronous dispersal can generate multiple attractors with fractal basin boundaries. However, mixed compensatory and overcompensatory systems appear to exhibit single attractors and not coexisting (multiple) attractors.  相似文献   

2.
We study the role of asynchronous and synchronous dispersals on discrete-time two-patch dispersal-linked population models, where the pre-dispersal local patch dynamics are of mixed compensatory and overcompensatory types. Single-species dispersal-linked models behave as single-species single-patch models whenever all pre-dispersal local patch dynamics are compensatory and dispersal is synchronous. However, the dynamics of the corresponding two-patch population model connected by asynchronous dispersal depends on the dispersal rates. The species goes extinct on at least one patch when the asynchronous dispersal rates are high, while it persists when the rates are low. We use numerical simulations to show that in both synchronous and asynchronous mixed compensatory and overcompensatory systems, symmetric and asymmetric dispersals can control and impede the onset of cyclic population oscillations via period-doubling reversal bifurcations. Also, we show that in mixed systems both asynchronous and synchronous dispersals are capable of altering the pre-dispersal local patch dynamics from overcompensatory to compensatory dynamics. Dispersal-linked population models with ‘unstructured’ overcompensatory pre-dispersal local dynamics connected by synchronous dispersal can generate multiple attractors with fractal basin boundaries. However, mixed compensatory and overcompensatory systems appear to exhibit single attractors and not coexisting (multiple) attractors.  相似文献   

3.
We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.  相似文献   

4.
In this paper, we examine the effects of patch number and different dispersal patterns on dynamics of local populations and on the level of synchrony between them. Local population renewal is governed by the Ricker model and we also consider asymmetrical dispersal as well as the presence of environmental heterogeneity. Our results show that both population dynamics and the level of synchrony differ markedly between two and a larger number of local populations. For two patches different dispersal rules give very versatile dynamics. However, for a larger number of local populations the dynamics are similar irrespective of the dispersal rule. For example, for the parameter values yielding stable or periodic dynamics in a single population, the dynamics do not change when the patches are coupled with dispersal. High intensity of dispersal does not guarantee synchrony between local populations. The level of synchrony depends also on dispersal rule, the number of local populations, and the intrinsic rate of increase. In our study, the effects of density-independent and density-dependent dispersal rules do not show any consistent difference. The results call for caution when drawing general conclusions from models of only two interacting populations and question the applicability of a large number of theoretical papers dealing with two local populations.  相似文献   

5.
Both source-sink theory and extensions of optimal foraging theory ("balanced dispersal" theory) address dispersal and population dynamics in landscapes where habitat patches vary in quality. However, studying dispersal mechanisms empirically has proven difficult, and dispersal is rarely tied back to long-term spatial dynamics. We used a manipulable laboratory system consisting of bacteria and protozoa to investigate the ability of source-sink and optimal foraging theories to explain both dispersal and emergent spatial dynamics. Consistent with source-sink models and contrary to balanced dispersal models, there was a consistent net flux of protist individuals from high to low resource patches. However, unlike the simplest source-sink models, intermediate rates of dispersal led to highest abundances in low resource patches. Side experiments found strong density dependence in local population dynamics and differences in average protist body size in high and low resource patches. Parameterization and analysis of a two-patch model showed that high migration from high to low resource patches could have depressed population density in low resource patches, creating pseudosinks. The movement of individuals and biomass from sources to sinks (a form of ecosystem subsidy) resulted in the convergence of body size and population densities in sources and sinks. Our results indicate a need to carefully consider movement patterns and interaction with local dynamics in potential source-sink systems.  相似文献   

6.
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.  相似文献   

7.
The effects of synchronous dispersal on discrete-time metapopulation dynamics with local (patch) dynamics of the same (compensatory or overcompensatory) or mixed (compensatory and overcompensatory) types are explored. Single-species metapopulation models behave as single-species single-patch models, whenever all local patches are governed by compensatory dynamics. Dispersal gives rise to multiple attractors with complex basin structures, whenever some local patches are under overcompensatory dynamics. In mixed systems, dispersal is capable of altering the local dynamics from compensatory to overcompensatory dynamics and vice versa. Examples are provided of metapopulation models supporting multiple attractors with intermingled basins of attraction.  相似文献   

8.
Abstract.  1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure.
2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances.
3. Mark–recapture data and presence–absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie.
4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space.
5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space.  相似文献   

9.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

10.
Malcom JW 《PloS one》2011,6(6):e21541
Dispersal is an important mechanism contributing to both ecological and evolutionary dynamics. In metapopulation and metacommunity ecology, dispersal enables new patches to be colonized; in evolution, dispersal counter-acts local selection, leading to regional homogenization. Here, I consider a three-patch metacommunity in which two species, each with a limiting quantitative trait underlain by gene networks of 16 to 256 genes, compete with one another and disperse among patches. Incorporating dispersal among heterogeneous patches introduces a tradeoff not observed in single-patch simulations: if the difference between gene network size of the two species is greater than the difference in dispersal ability (e.g., if the ratio of network sizes is larger than the ratio of dispersal abilities), then genetic architecture drives community outcome. However, if the difference in dispersal abilities is greater than gene network differences, then any adaptive advantages afforded by genetic architecture are over-ridden by dispersal. Thus, in addition to the selective pressures imposed by competition that shape the genetic architecture of quantitative traits, dispersal among patches creates an escape that may further alter the effects of different genetic architectures. These results provide a theoretical expectation for what we may observe as the field of ecological genomics develops.  相似文献   

11.
I investigate how risk spreading in stochastic environments and adaptation to permanent properties of local habitats interplay in the simultaneous evolution of dispersal and habitat specialization. In a simple two-patch model, I find many types of locally evolutionarily stable attractors of dispersal and of a trait involved in habitat specialization, including a single habitat specialist and a coalition of two specialists with low dispersal, a generalist with high dispersal, and several types of dispersal polymorphisms. In general, only one attractor is a global evolutionarily stable strategy (ESS). In addition to the ESS analysis, I also present some examples of the dynamics of evolution that exhibit adaptive diversification by evolutionary branching.  相似文献   

12.
Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.  相似文献   

13.
A key assumption of the ideal free distribution (IFD) is that there are no costs in moving between habitat patches. However, because many populations exhibit more or less continuous population movement between patches and traveling cost is a frequent factor, it is important to determine the effects of costs on expected population movement patterns and spatial distributions. We consider a food chain (tritrophic or bitrophic) in which one species moves between patches, with energy cost or mortality risk in movement. In the two-patch case, assuming forced movement in one direction, an evolutionarily stable strategy requires bidirectional movement, even if costs during movement are high. In the N-patch case, assuming that at least one patch is linked bidirectionally to all other patches, optimal movement rates can lead to source-sink dynamics where patches with negative growth rates are maintained by other patches with positive growth rates. As well, dispersal between patches is not balanced (even in the two-patch case), leading to a deviation from the IFD. Our results indicate that cost-associated forced movement can have important consequences for spatial metapopulation dynamics. Relevance to marine reserve design and the study of stream communities subject to drift is discussed.  相似文献   

14.
Metacommunity theory poses that the occurrence and abundance of species is a product of local factors, including disturbance, and regional factors, like dispersal among patches. While metacommunity ideas have been broadly tested there is relatively little work on metacommunities subject to disturbance. We focused on how localized disturbance and dispersal interact to determine species composition in metacommunities. Experiments conducted in simple two-patch habitats containing eight protozoa and rotifer species tested how dispersal altered community composition in both communities that were disturbed and communities that connected to refuge communities not subject to disturbance. While disturbance lowered population densities, in disturbed patches connected to undisturbed patches this was ameliorated by immigration. Furthermore, species with high dispersal abilities or growth rates showed the fastest post-disturbance recovery in presence of immigration. Connectivity helped to counteract the negative effect of disturbances on local populations, allowing mass-effect-driven dispersal of individuals from undisturbed to disturbed patches. In undisturbed patches, however, local population sizes were not significantly reduced by emigration. The absence of a cost of dispersal for undisturbed source populations is consistent with a lack of complex demography in our system, such as age- or sex-specific emigration. Our approach provides an improved way to separate components of population growth from organisms' movement in post-disturbance recovery of (meta)communities. Further studies are required in a variety of ecosystems to investigate the transient dynamics resulting from disturbance and dispersal.  相似文献   

15.
Allee-like effects in metapopulation dynamics   总被引:4,自引:0,他引:4  
The existences of the Allee effect at the local population level and of the Allee-like effect at the metapopulation level are important for both ecology and conservation. Although there have been a great many papers on the Allee effect, they have mainly referred to only local populations and have not dealt with the relationship between the two. In this paper, we begin with local population dynamics and then construct a model including both local population and metapopulation dynamics. Then we simulate with computer at these two levels. The results indicate that the Allee-like effect in a metapopulation may emerge from the imposed Allee effect at the local population level. This threshold fraction of occupied patches below which the metapopulation goes extinct is seriously affected by the per capita migration rate, the survival rate during migration and the initial population size on the occupied patches. We also find that severe demographic stochasticity may compound the metapopulation extinction risk posed by the Allee effect. These conclusions are helpful for nature conservation, especially for the preservation of rare species.  相似文献   

16.
17.
The evolutionary potential of populations is mainly determined by population size and available genetic variance. However, the adaptability of spatially structured populations may also be affected by dispersal: positively by spreading beneficial mutations across sub-populations, but negatively by moving locally adapted alleles between demes. We develop an individual-based, two-patch, allelic model to investigate the balance between these opposing effects on a population''s evolutionary response to rapid climate change. Individual fitness is controlled by two polygenic traits coding for local adaptation either to the environment or to climate. Under conditions of selection that favour the evolution of a generalist phenotype (i.e. weak divergent selection between patches) dispersal has an overall positive effect on the persistence of the population. However, when selection favours locally adapted specialists, the beneficial effects of dispersal outweigh the associated increase in maladaptation for a narrow range of parameter space only (intermediate selection strength and low linkage among loci), where the spread of beneficial climate alleles is not strongly hampered by selection against non-specialists. Given that local selection across heterogeneous and fragmented landscapes is common, the complex effect of dispersal that we describe will play an important role in determining the evolutionary dynamics of many species under rapidly changing climate.  相似文献   

18.
The relationship between density and area depends on local growth rates and the area-dependence of migration rates. These rates vary among taxa due to dispersal behaviour, plot productivity and natural enemy impact. Previous studies in aphids suggest that aphid densities are highest in patches of intermediate sizes, and lower in small and large patches. The suggested mechanism causing these patterns is that the dispersal behaviour in aphids creates a mixture of area- and perimeter-dependent migration rates. In this paper, we used these predictions to examine the additional consequences of nutrient availability and natural enemies on the density-area relationship. The derived predictions were compared to data from a system with three aphid species, a set of aphid parasitoids and generalist natural enemies, and at two levels of plant nutrient availability. We find that predictions from the model based only on dispersal and local growth agree with the temporal dynamics of density-area relationships for aphids in high nutrient patches. In patches with low nutrients, high parasitism rates appeared to cause a negative density-area relationship for aphids, thereby deviating from predictions driven by the aphids' dispersal behavior. Hence, the dispersal model with scale-dependent migration rates can provide a useful tool for understanding insect distribution in patch size gradients, but the relative importance of top-down effects can completely change with plot productivity.  相似文献   

19.
The resource concentration hypothesis (Root 1973) predicts that specialist herbivorous insects should be more abundant in large patches of host plants, because the insects are more likely to find and stay longer in those patches. Between August 1989 and January 1990 we experimentally tested Root's hypothesis by analyzing the numerical response of four species of herbivorous insects associated with patches of 4, 16, 64 and 225 cabbage plants, Brassica oleracea var. capitata. In addition, we studied the colonization of patches by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae), and the migration of their larvae in patches of different sizes. No herbivorous insect densities differed significantly with patch size. Adults of P. xylostella colonized all kind of patches equally. Larvae did not migrate between patches, and their disappearance rate did not differ between patches. The resource concentration hypothesis is organism-dependent, being a function of the adult and juvenile herbivore dispersal behavior in relation to the spatial scale of patchiness.  相似文献   

20.
The relative abilities of individual cichlids, Tilapia zillii to obtain food under scramble competition was highly repeatable between trials using a single input source, regardless of whether the input was constant or variable. However, when given a choice between two patches differing only in their temporal variability in input about an identical mean, an individual's rank based on intake in one patch was uncorrelated with either its intake in the other patch or its intake in the single-patch trials. In the two-patch trials, certain individuals both spent more time in food patches and visited patches more often than others, and overall the fish spent more time in the constant rate patch than the variable patch, leading to more items being consumed from the constant rate patch. We discuss possible causes and consequences of this dependence of relative competitive ability on the context of the foraging situation. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号