首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Fusion of protoplasts of Coprinus macrorhizus mutants with different amino acid requirements resulted in the production of prototrophic clones at frequencies of 1–4% of the protoplasts surviving the fusion treatment. The frequencies were at least 200 times higher than those of the appearance of revertants. Few prototrophic colonies appeared also when the mutant protoplasts were individually subjected to fusion treatment, or when they were mixedly cultured without fusion treatment. It was thus concluded that intraspecific heterokaryons were formed by protoplast fusion.The auxotrophic mutants did not form fruit bodies when cultured singly or mixedly with each other. In contrast, the heterokaryons produced by protoplast fusion between the mutants of compatible mating types developed into fruit bodies with intermediate morphology of those of the strains from which the mutants were derived. Heterokaryons were also formed by fusion of mutant protoplasts with identical mating genotype, but they failed to form fruit bodies.Abbreviations PEG polyethyleneglycol - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid  相似文献   

2.
Successful intra- and interspecific mitochondrial transfers were performed by polyethylene glycol (PEG)-induced protoplast fusion among incompatible strains belonging to the Aspergillus niger species aggregate. The mitochondrial DNAs (mtDNAs) of the strains examined were of three main types based on their restriction fragment length polymorphism (RFLP) profiles. mtDNA types 1 and 2 correspond to A. niger and A. tubingensis species, respectively, while type 3 is represented by some Brazilian wild-type isolates (possibly a distinct species or subspecies). mtDNA types 1 and 2 could be further divided into several subgroups (1a–1e and 2a–2f ). All these strains, representing different RFLP groups or subgroups, were fully incompatible with respect to nuclear complementation. The transfer experiments were carried out under selection pressure, using a mitochondrial oligomycin-resistant mutant of mtDNA type 1a as donor. Following fusion mitochondrial oligomycin-resistant progenies were recovered in the presence of oligomycin by selecting for the nuclear phenotypes of the oligomycin-sensitive recipient strains. All attempted transfers were successful, and resulted in different varieties of resistant recombinant mitochondrial progenies at various frequencies. Within the group of strains of mtDNA type 1, the transfer of oligomycin-resistant mitochondria resulted in the appearance of a single recombinant type of RFLP profile in each case. The recombination events were more complex when the transfer of oligomycin resistance occurred between strains representing different species (mtDNA groups 1a→2 and 1a→3). A great variety of recombinant mtDNA RFLP profiles appeared. Explanation for this phenomenon are discussed on the basis of preliminary physical mapping data. Received: 16 July 1996 / Accepted: 2 December 1996  相似文献   

3.
Summary A method has been developed for the transfer of genes from other yeast strains and species to industrial yeast strains, using a haploid, kar1-1 mutant strain of Saccharomyces cerevisiae as a vector. The sta2 gene, conferring the ability to metabolize starch was transferred from an autotrophic haploid strain of S. cerevisiae (S. diastaticus) and the melibiose-metabolism (mel) gene(s), from S. kluyveri, to the kar1-1 mutant [K5-5A; ( ade2 his4 can1 gal) by normal mating and protoplast fusion. From this strain, the genes were transferred to baker's yeast and brewing yeast strains, which did not utilize starch, and to baker's yeast strains, which did not utilize melibiose, by protoplast fusion, spore-cell pairing, or rare-mating. Strains that utilized starch or melibiose were obtained by all three methods. Pulsed-field gel electrophoresis preparations showed little change in the mobility of the chromosomes of the hybrids. The most probable explanation for the results obtained is that single chromosomes were transferred, first, from the donor strains to the kar1-1 haploid mutant strain, and then from the kar1-1 vector to the recipient industrial strain of S. cerevisiae. The transfer of the genes is probably accomplished through formation of disomic strains and the, in the case of the hybrids that metabolize starch, by integration of the sta2 gene into the genome of the industrial yeast strains.  相似文献   

4.
Protoplast fusions between strains of identical and of opposite mating type were performed. Sexual crosses and protoplast fusions inRhodosporidium toruloides led to different hybrid types. Sexual crosses gave rise exclusively to a dikaryotic mycelium. In protoplast fusions between strains of identical mating type (A ora), monokaryotic yeast-like hybrids which sustained the parental mating type were obtained. In protoplast fusions between strains of opposite mating type, the majority of the hybrids belonged to theMyc + type, i.e., the hybrids grew like yeasts, able to switch over spontaneously to mycelial growth. In addition to theMyc + types, up to 10% real yeast hybrids and less than 5% dikaryotic mycelia were obtained. Obviously the cell type inR. toruloides is under the control of the mating type alleles.  相似文献   

5.
Summary Pairs of strains of opposite mating type were isolated from a strain of Saccharomyces cerevisiae. From these isogenic strains, mitochondrially inherited resistant mutants to antimycin A and erythromycin were isolated. By using the two resistance genes as mitochondrial markers, it was proposed that the distribution of the mitochondrial genomes from zygotes to tetrads seemed not to be random but the genomes from either a or parent would be selected with approximately equal frequencies after zygote formation and subsequently distributed uniparentally to meiotic products.  相似文献   

6.
Protoplast fusion has been used to combine genes from different organisms to create strains with desired properties. A recently developed variant on this approach, genome shuffling, involves generation of a genetically heterogeneous population of a single organism, followed by recursive protoplast fusion to allow recombination of mutations within the fused protoplasts. These are powerful techniques for engineering of microbial strains for desirable industrial properties. However, there is a prevailing opinion that it will be difficult to use these methods for engineering of Gram-negative bacteria because the outer membrane makes protoplast fusion more difficult. Here we describe the successful use of protoplast fusion in Escherichia coli. Using two auxotrophic strains of E. coli, we obtained prototrophic strains by recombination in fused protoplasts at frequencies of 0.05-0.7% based on the number of protoplasts subjected to fusion. This frequency is three-four orders of magnitude better than those previously reported for recombination in fused protoplasts of Gram-negative bacteria such as E. coli and Providencia alcalifaciens.  相似文献   

7.
When protoplasts carrying metalaxyl-resistant (Mr) nuclei from the A1 isolate of Phytophthora parasitica were fused with protoplasts carrying chloroneb-resistant (Cnr) nuclei from the A2 isolate of the same species, fusion products carrying Mr nuclei were either the A2 or A1A2 type, while those carrying Cnr nuclei were the A1, A2, or A1A2 type. Fusion products carrying Mr and Cnr nuclei also behaved as the A1, A2, or A1A2 type. The result refutes the hypothesis that mating types in Phytophthora are controlled by nuclear genes. When nuclei from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species and vice versa, all of the nuclear hybrids expressed the mating type characteristics of the protoplast parent. The same was true when the nuclei from the A1 isolate of P. parasitica were fused with the protoplasts from the A0 isolate of Phytophthora capsici and vice versa. These results confirm the observation that mating type genes are not located in the nuclei and suggest the presence of mating type genes in the cytoplasms of the recipient protoplasts. When mitochondria from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species, the mating type of three out of five regenerated protoplasts was changed to the A1 type. The result demonstrated the decisive effect of mitochondrial donor sexuality on mating type characteristics of mitochondrial hybrids and suggested the presence of mating type genes in mitochondria. All of the mitochondrial hybrids resulting from the transfer of mitochondria from the A0 isolate of P. capsici into protoplasts from the A1 isolate of P. parasitica were all of the A0 type. The result supports the hypothesis of the presence of mating type genes in mitochondria in Phytophthora.  相似文献   

8.
Successful intra- and interspecific mitochondrial transfers were performed by polyethylene glycol (PEG)-induced protoplast fusion among incompatible strains belonging to the Aspergillus niger species aggregate. The mitochondrial DNAs (mtDNAs) of the strains examined were of three main types based on their restriction fragment length polymorphism (RFLP) profiles. mtDNA types 1 and 2 correspond to A. niger and A. tubingensis species, respectively, while type 3 is represented by some Brazilian wild-type isolates (possibly a distinct species or subspecies). mtDNA types 1 and 2 could be further divided into several subgroups (1a–1e and 2a–2f?). All these strains, representing different RFLP groups or subgroups, were fully incompatible with respect to nuclear complementation. The transfer experiments were carried out under selection pressure, using a mitochondrial oligomycin-resistant mutant of mtDNA type 1a as donor. Following fusion mitochondrial oligomycin-resistant progenies were recovered in the presence of oligomycin by selecting for the nuclear phenotypes of the oligomycin-sensitive recipient strains. All attempted transfers were successful, and resulted in different varieties of resistant recombinant mitochondrial progenies at various frequencies. Within the group of strains of mtDNA type 1, the transfer of oligomycin-resistant mitochondria resulted in the appearance of a single recombinant type of RFLP profile in each case. The recombination events were more complex when the transfer of oligomycin resistance occurred between strains representing different species (mtDNA groups 1a→2 and 1a→3). A great variety of recombinant mtDNA RFLP profiles appeared. Explanation for this phenomenon are discussed on the basis of preliminary physical mapping data.  相似文献   

9.
使用由亚硝基胍诱变所得到的营养缺陷型作为单倍体融合亲株的核基因标记,同时也采用线粒体球红霉素抗性突变株的小菌落形式作为融合亲株的线粒体基因标记。酿酒酵母(Saccharomyces cerevisiae)和产朊假丝酵母(Candida utilis)两亲株原生质体的制备是用对数生长早期的细胞在蜗牛酶和0.7M KCl及β-巯基乙醇或二巯基苏糖醇的作用下完成的。二者的原生质体的形成率在30—60分钟内达到90—99%。原生质体再生率,酿酒酵母最高为29—35%,产朊假丝酵母为7.5%。两亲株的原生质体在35%PEG(M.W.6,000),10mM CaCl_2条件下被诱导融合。在基础培养基上,长出以营养互补为标记的融合菌株。融合频率为10~(-5)—10~(-6)。试验表明,这些融合菌株具有杂种的性质。其中一株杂合子在同化D-木糖、纤维二糖等的能力上比亲株明显增强。  相似文献   

10.
S. Kawano  H. Takano  J. Imai  K. Mori    T. Kuroiwa 《Genetics》1993,133(2):213-224
We have identified two distinct mitochondrial phenotypes, namely, Mif(+) (mitochondrial fusion) and Mif(-) (mitochondrial fusion-deficient), and have studied the genetic system that controls mitochondrial fusion in the slime mould, Physarum polycephalum. A mitochondrial plasmid of approximately 16 kbp was identified in all Mif(+) plasmodial strains. This plasmid is apparently responsible for promoting mitochondrial fusion, and it is inserted into the mitochondrial DNA (mtDNA) in successive sexual crossing with Mif(-) strains. This recombinant mtDNA and the unchanged free plasmid spread through the mitochondrial population via the promotion of mitochondrial fusion. The Mif(+) strains with the plasmid were further classified as being two types: high frequency and low frequency mitochondrial fusion. Restriction analysis of the mtDNA suggested that the high frequency mitochondrial fusion type was more often heteroplasmic; within each plasmodium, mtDNAs of both parental types were usually present, in addition to the presence of the plasmid. Genetic analysis with the progeny obtained from crossing myxamoebae derived from three different isolates suggested that these progeny carried different alleles at a nuclear locus that controlled the frequency of mitochondrial fusion. These alleles (mitochondrial mating-type alleles, mitA1, 2 and 3) appear to function like the mating type of the myxamoebae; mitochondrial fusion occurs at high frequency with the combination of unlike alleles, but at low frequency with the combination of like alleles.  相似文献   

11.
The dominating strains of most sugar-based natural and industrial fermentations either belong to Saccharomyces cerevisiae and Saccharomyces uvarum or are their chimeric derivatives. Osmotolerance is an essential trait of these strains for industrial applications in which typically high concentrations of sugars are used. As the ability of the cells to cope with the hyperosmotic stress is under polygenic control, significant improvement can be expected from concerted modification of the activity of multiple genes or from creating new genomes harbouring positive alleles of strains of two or more species. In this review, the application of the methods of intergeneric and interspecies hybridization to fitness improvement of strains used under high-sugar fermentation conditions is discussed. By protoplast fusion and heterospecific mating, hybrids can be obtained that outperform the parental strains in certain technological parameters including osmotolerance. Spontaneous postzygotic genome evolution during mitotic propagation (GARMi) and meiosis after the breakdown of the sterility barrier by loss of MAT heterozygosity (GARMe) can be exploited for further improvement. Both processes result in derivatives of chimeric genomes, some of which can be superior both to the parental strains and to the hybrid. Three-species hybridization represents further perspectives.  相似文献   

12.
To overcome the drawbacks of protoplast fusion in industrial breeding, strain-specific molecular markers were applied to select hybrids of industrial Saccharomyces cerevisiae strains. Random Amplified Polymorphic DNA (RAPD) analysis was used to generate strain-specific RAPD markers for two industrial yeast strains, Z8 and Z9. For industrial and technical controls, two RAPD markers with non-coding regions were converted into stable Sequence Characterized Amplified Region (SCAR) markers. Hybrids of Z8 and Z9 were obtained by protoplast fusion in combination with SCAR markers and were found to increase ethanol production by 4.3–8.1%. Results suggested that protoplast fusion could be combined with RAPD-SCAR molecular markers and applied in industrial breeding instead of auxotrophic markers.  相似文献   

13.
Summary The average transmission-and recombination frequencies of mitochondrial markers are similar in diploid clones derived from zygotes or from fusion of haploid protoplasts of identical mating type. The transmissional patterns of mitochondrial markers in individual fusion-or zygote-clones, however, are very different. The time needed for regeneration of cell walls of fused protoplasts is found to be mainly responsible for this difference, since delay of first cell division in zygotes leads to similar results.  相似文献   

14.
Summary The effects of tetracycline on transfer of the conjugative, tetracycline-resistance transposon, Tn925, as well as the ability of the transposon to promote the transfer of chromosomal genes was examined in Enterococcus faecalis and Bacillus subtilis. To test for chromosomal transfer, multiply-marked strains of each organism, each carrying a single chromosomal copy of Tn925, were mated on filters with suitable recipient strains, under conditions where transformation and transduction were precluded. In both cases, transfer of a variety of chromosomal genes, at frequencies comparable to the frequency of Tn925 transfer, was detected readily. The presence of Tn925 in one of the members of the mating pair was absolutely required for chromosomal transfer, but transfer of Tn925 did not accompany every chromosomal transfer event. The results were consistent with a mating event resembling a type of cell fusion, allowing for extensive recombination between the genomes of the mating partners. Growth of Tn925-containing donor cells in the presence of tetracycline increased the transfer frequency of Tn925 by about tenfold in E. faecalis, but not in B. subtilis.Deceased, 7/89. O. Torres and R. Korman contributed equally to this work  相似文献   

15.
Summary Twenty-two sexual crosses between strains of Phycomyces blakesleeanus carrying mutations affecting phototropism (madA, madD, madE), synthesis of carotenoids (carA), auxotrophy (leu-51, nicA, pur-51), and resistance to 5-fluorouracil (fur) were studied; mating type was also included as a marker. Recombination frequencies were obtained among the ten genes involved. Linkage was found between mating type and madE; leu-51 and madA; furA401, furB402 and madD. All other gene combinations tested are unliked.  相似文献   

16.
用灭活的近裸香菇(Lentinus subnudus Berk.)双核菌株原生质体与香菇[L. edodes(Berk.)Sing.]双核菌株原生质体融合,在35℃的条件下选得融合子。融合频率为0—4.3×10~(-5)。融合子与双亲有明显的拮抗性。融合子的菌丝形态、氨基酸含量,子实体的形态,以及酸性磷酸酶同功酶的测定都与双亲不同。  相似文献   

17.
Summary This first application of the technique of protoplast fusion to Schwanniomyces suggests that it is possible to overcome the genetic isolation of this genus imposed by its inability to undergo conventional intraspecific mating. The stability, increased ploidy, and cell volumes of such fusion hybrids over the parental strains indicate the possibility of construction of polyploid strains suitable for use in industry.Nuclear fusion (karyogamy) appears to occur in intraspecific hybrids as evidenced by isolation of recombinants after mitotic segregation of parental auxotrophic genetic markers.Intergeneric hybrids formed from Schw. alluvius and Saccharomyces spp. were unstable and spontaneously segregated into original auxotrophic parent cultures. Genetic diversity between these genera may be too great to allow stable co-existance of the two genomes within a single nucleus. Nuclear fusion in such cases could not be confirmed.  相似文献   

18.
To discover whether the protoplast fusion method is useful or not for interspecific breeding, some methods were devised, and the appearance of various hybrids with different characters and the change of antibiotic activities in the recombinants obtained by the protoplast fusion were investigated. The purification of protoplasts, the choice of parental natural characters as selection markers, and the adoption of a replica method for selecting all types of recombinants were devised and used for these experiments. Protoplast fusion was done between S. griseus KCC S-0644 and each strain of 5 species that were clearly different species from S. griseus, in addition to being streptomycin sensitive (SMs) and capable of L-arabinose utilization for growth (Ara+). Recombinants (SMr, Ara+) obtained by protoplast fusion displayed a great variety of hybrids in their taxonomic characters, e.g., 21 recombinant strains obtained by the cross between S. griseus and S. griseoruber consisted of 14 types of hybrids. Antibiotic productivity was examined in all recombinants obtained. Although both parental species produced their respective antibiotics, 60% of the recombinants did not produce any antibiotic and 24% produced different antibiotics from those of their parents. Among those recombinants, it was also found that the distribution of the productivity of each antibiotic among the recombinants was entirely different from that of the allelo-character in each taxonomic feature.  相似文献   

19.
Fourteen randomly clover indigenous nodulated Rhizobium strains were isolated from different locations in Saudi Arabia. They were identified as different strains of the genus Rhizobium leguminosarum biovar trifolii and characterized for their intrinsic antibiotic resistance against a range of antibiotics, nodulation capability and plasmid profiles. Results revealed the presence of high molecular weight plasmids (megaplasmids) in all the selected strains. Based on the ability for nodulation production, two weak strains (RtI1 and RtI2) and one efficient strain (RtA1) were selected for protoplast fusion and the numbers of nodules produced by the intra-specific protoplast fusion strains were investigated. Results clearly confirmed the effective role of the protoplast fusion in enhancing both nodulation production capacity of Rhizobium species and their range of antibiotic resistance. Protoplast fusion of the local Rhizobium species resulted in 1.93- to 5.67-fold increase in nodulation number compared to their parental strains, which was considered an excellent result concerning agricultural practices, especially the formation of nitrogen-fixing root nodules on legume crop plants. Protoplast fusion also produced fusants with a wide range of antibiotic resistance, another advantage added to the new strains against environmental stresses. In conclusion, protoplast fusion proved its efficiency as a tool for constructing a second generation of Rhizobia with much better characteristics for efficient applications in arid land.  相似文献   

20.
Summary Cauliflower protoplasts were fused to determine the effect of protoplast source and pretreatment on organellar segregation in fusion products. Mitochondrial and chloroplast type were determined for over 250 calli from eight fusions between iodoacetate-treated or -irradiated leaf or hypocotyl protoplasts with fertile or Ogura cytoplasms. Organelles in fusion-derived calli were identified with five mitochondrial probes and one chloroplast probe. Mitochondrial and chloroplast segregation were independent but biased. Most calli had B. oleracea chloroplasts, but more calli had Ogura mitochondria than B. oleracea ones. Neither protoplast source nor pretreatment alone affected organelle segregation. However, iodoacetate treatment of hypocotyl protoplasts reduced their mitochondrial contribution to the fusion products although it did not affect chloroplast segregation. Over half of the calli had mitochondrial genomes distinct from those of either fusion partner; many of these contained the complete mitochondrial genome of one partner along with some mitochondrial DNA from the other. Out of 258 calli, 83 showed evidence of mitochondrial recombination, most commonly by formation of a novel 11-kb PstI fragment near the atp9 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号