首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO4) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO4 exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray–Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO4 was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO4 exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.  相似文献   

2.
CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China''s Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general.  相似文献   

3.
4.
We studied the role of aerobic and anaerobic petroleum hydrocarbon degradation at a boreal, light-weight fuel and lubrication oil contaminated site undergoing natural attenuation. At the site, anoxic conditions prevailed with high concentrations of CH4 (up to 25% v/v) and CO2 (up to 18% v/v) in the soil gas throughout the year. Subsurface samples were obtained mainly from the anoxic parts of the site and they represented both the unsaturated and saturated zone. The samples were incubated in microcosms at near in situ conditions (i.e. in situ temperature 8 degrees C, aerobic and anaerobic conditions, no nutrient amendments) resulting in the removal of mineral oil (as determined by gas chromatography) aerobically as well as anaerobically. In the aerobic microcosms on average 31% and 27% of the initial mineral oil was removed during a 3- and 4-month incubation, respectively. In the anaerobic microcosms, on average 44% and 15% of the initial mineral oil was removed during a 12- and 10-month anaerobic incubation, respectively, and e.g. n-alkanes from C11 to C15 were removed. A methane production rate of up to 2.5 microg CH4 h(-1) g(-1) dwt was recorded in these microcosms. In the aerobic as well as anaerobic microcosms, typically 90% of the mineral oil degraded belonged to the mineral oil fraction that eluted from the gas chromatograph after C10 and before C15, while 10% belonged to the fraction that eluted after C15 and before C40. Our results suggest that anaerobic petroleum hydrocarbon degradation, including n-alkane degradation, under methanogenic conditions plays a significant role in the natural attenuation in boreal conditions.  相似文献   

5.
Enhanced Biodegradation of Petroleum Hydrocarbons in Contaminated Soil   总被引:5,自引:0,他引:5  
Soil samples taken from a contaminated site in Northern Quebec, Canada, exhibited a low capacity for biodegradation of total petroleum hydrocarbons (TPH), despite a high capacity for the mineralization of aromatic hydrocarbons and a low toxicity of soil leachates as measured by Microtox assay. Toxicity assays directly performed on surface soil, including earthworm mortality and barley seedling emergence, indicated moderate to high levels of toxicity. Soil biostimulation did not improve the removal of petroleum hydrocarbons, while bioaugmentation of soil with a developed enrichment culture increased the efficiency of hydrocarbon removal from 20.4% to 49.2%. A considerable increase in the removal of TPH was obtained in a bioslurry process, enhancing the mass transfer of hydrocarbons from soil to the aqueous phase and increasing the efficiency of hydrocarbon removal to over 70% after 45 days of incubation. The addition of ionic or nonionic surfactants did not have a significant impact on biodegradation of hydrocarbons. The extent of hydrocarbon mineralization during the bioslurry process after 45 days of incubation ranged from 41.3% to 58.9%, indicating that 62.7% to 83.1% of the eliminated TPH were transformed into CO2 and water.  相似文献   

6.
Soil samples taken from a contaminated site in Northern Quebec, Canada, exhibited a low capacity for biodegradation of total petroleum hydrocarbons (TPH), despite a high capacity for the mineralization of aromatic hydrocarbons and a low toxicity of soil leachates as measured by Microtox assay. Toxicity assays directly performed on surface soil, including earthworm mortality and barley seedling emergence, indicated moderate to high levels of toxicity. Soil biostimulation did not improve the removal of petroleum hydrocarbons, while bioaugmentation of soil with a developed enrichment culture increased the efficiency of hydrocarbon removal from 20.4% to 49.2%. A considerable increase in the removal of TPH was obtained in a bioslurry process, enhancing the mass transfer of hydrocarbons from soil to the aqueous phase and increasing the efficiency of hydrocarbon removal to over 70% after 45 days of incubation. The addition of ionic or nonionic surfactants did not have a significant impact on biodegradation of hydrocarbons. The extent of hydrocarbon mineralization during the bioslurry process after 45 days of incubation ranged from 41.3% to 58.9%, indicating that 62.7% to 83.1% of the eliminated TPH were transformed into CO2 and water.  相似文献   

7.
Laccase was produced by Coriolopsis rigida using barley bran as substrate in solid-state fermentation (SSF) and also by submerged fermentation (SmF). The best results were obtained in SSF with twice the amount of laccase production. Laccase could be produced from repeated batch cultures of SSF over 30 days. The laccase degraded several polycyclic aromatic hydrocarbons (PAHs) in vivo and in vitro. The addition of an effective mediator, 1-hydroxybenzotriazol (50 µM), during in vitro treatment increased the degradation rate.  相似文献   

8.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

9.
The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.  相似文献   

10.
Soil column and serum bottle microcosm experiments were conducted to investigate the potential for in situ anaerobic bioremediation of trichloroethy lene (TCE) and dichloromethane (DCM) at the Pinellas site near Largo, Florida. Soil columns with continuous groundwater recycle were used to evaluate treatment with complex nutrients (casamino acids, methanol, lactate, sulfate); benzoate and sulfate; and methanol. The complex nutrients drove microbial dechlorination of TCE to ethene, whereas the benzoate/sulfate and methanol supported microbial dechlorination of TCE only to cis-1 ,2-dichloroethylene (cDCE). Microbial sulfate depletion in the benzoate/sulfate column allowed further dechlorination of cDCE to vinyl chloride. Serum bottle microcosms were used to investigate TCE dechlorination and DCM biodegradation in Pinellas soil slurries bioaugmented with liquid from the soil columns possessing TCE-dechlorinating activity and DCM biodegradation by indigenous microorganisms. Bioaugmented soil microcosms showed immediate TCE dechlorination in the microcosms with methanol or complex nutrients, but no dechlorination in the benzoate/sulfate microcosm. DCM biodegradation by indigenous microorganisms occurred in soil microcosms amended with either benzoate/sulfate or methanol, but not with complex nutrients. Bioaugmentation stimulated DCM biodegradation in both complex nutrient and methanol-amended microcosms, but appeared to inhibit DCM biodegradation in benzoate/sulfate-amended microcosms. TCE dechlorination occurred before DCM biodegradation in bioaugmented microcosms when both compounds were present.  相似文献   

11.
The ability of dehalogenating bacteria to compete with sulfate reducing bacteria for electron donor was studied in microcosms that simulated groundwater contaminated with both chlorinated ethylenes and fuel hydrocarbon compounds. Results demonstrate that reductive dehalogenation of perchloroethylene to ethylene can proceed in the presence of > 100 mg l(-1) sulfate. The hydrogen concentration, which was 2.5 nM in the presence of approximately 150 mg l(-1) sulfate and in the absence of chlorinated compounds, decreased to 0.7 nM during the dechlorination of trichloroethylene and increased to 1.6 nM during the dechlorination of cis-dichloroethylene and vinyl chloride. With only sediment associated donor ("historical" donor) present, dechlorination of trichloroethylene proceeded slowly to ethylene (on a time scale of several years). Addition of toluene, a model hydrocarbon compound, stimulated dechlorination indirectly. Toluene degradation was rapid and linked to sulfate utilization, and presumably formed fermentable substrates that served as hydrogen donors. Dehalogenation was inhibited in soil free microcosms containing 5 mM sulfide, but inhibition was not observed when either aquifer sediment or 5 mM ferrous chloride was added.  相似文献   

12.
Abstract

Oligonucleotides are finding widespread utility in various applications in diagnostics and molecular biology and as therapeutic agents. In standard synthesis of such oligonucleotides through phosphoramidite coupling, removal of the typical acid-labile 4,4′-dimethoxytrityl 5′-protecting group (DMTr), from the support-bound oligonucleotide plays a crucial role in each synthesis cycle in achieving high product yield and oligonucleotide quality. Although several reagents have been developed for this purpose, many have limited applicability to automated oligonucleotide synthesis on solid supports. The most commonly used reagents today are dilute solutions (2–15%) of an organic acid, typically trichloroacetic acid (TCA, pKa 0.8) or dichloroacetic acid (DCA, pKa 1.5) in dichloromethane. The high volatility (boiling point 40 °C) of dichloromethane and its high toxicity and carcinogenicity pose a hazard for personnel and the environment. In addition, as oligonucleotide synthesizers are now available to allow syntheses of up to 0.5 mole scale, the quantities of chlorinated waste generated have become quite large. In this context we became interested in replacing dichloromethane as deblocking reagent solvent with a less harmful solvent while preserving product yield and quality. We now report that it is not necessary to use halogenated solvents such as dichloromethane in the deblocking step of automated oligonucleotide synthesis in order to obtain high yields of high quality oligonucleotide product.  相似文献   

13.
14.
ABSTRACT

Bioventing can be effective for the remediation of soil contaminated with petroleum hydrocarbons. However, implementing laboratory results in field scenarios is difficult due to the lack of scale-up factors. Accordingly, laboratory bioventing experiments were undertaken at the meso-scale and then compared with previously completed micro-scale tests to evaluate the important scale-up factor. The developed meso-scale system holds 4 kg of soil, with bioventing conditions controlled from a nutrient, airflow, and water content perspective. Three soils were tested, and categorized as loamy sand, silt loam, and a mixture. Results over a 30-day period showed a two-stage degradation pattern that encompassed first-order degradation rates as compared with the single-stage first-order degradation rate determined in the micro-scale study. For the first stage (0–8 days), the degradation rate for loamy soil was 0.598 day?1, with the silty soil at 0.460 day?1, and mixed soil at 0.477 day?1. After 8 days, the degradation rate constant for the loamy soil dropped to 0.123 day?1, with the silty soil dropping to 0.075 day?1, and the degradation rate for the mixed soil dropping to 0.093 day?1. Comparison of the measured degradation rate values with the results from the micro-scale experiments gave scale-up factors varying from 1.9 to 2.7 for the types of soil considered in the current study. These differences in degradation rates between the two scales show the importance of scale-up factors when transferring feasibility study results to the field.  相似文献   

15.
The objectives of this study were to (1) test a simple bioremediation treatment strategy in the Arctic and (2) examine the effect of fertilization on the degradation of aliphatic and aromatic hydrocarbons. The site is a coarse sand pad that once supported fuel storage tanks. Concentrations of diesel-range organics at the beginning of the study (July 1996) ranged from 250 to 860 mg/kg soil. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil samples were collected three times during the thaw season and analyzed for physical and chemical properties, microbial populations and activities, and concentrations of semivolatile hydrocarbons. Soil pH and soil-water potentials declined as a result of fertilizer application. Addition of fertilizer significantly increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also resulted in ∼50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not related to the amount of fertilizer added. Losses of aliphatic hydrocarbons were attributed to biotic processes, whereas losses of aromatic hydrocarbons likely were a result of both biotic and abiotic processes.  相似文献   

16.
A funnel-and-gate system has been installed at a natural gas condensate-contaminated field site, for aerobic treatment of contaminated groundwater. Laboratory microcosms were used to assess the ability of indigenous microorganisms to biodegrade monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and isomers of xylene and trimethylbenzene) in the groundwater. Biodegradation was restricted unless phosphorus was added to the site water. Inorganic nitrogen addition had little effect. Estimated zero-order biodegradation rates for benzene, the predominant monoaromatic hydrocarbon in the water, were 87 μj,g/L/d in the absence of added P, but as high as 397 μg/L/d in P-amended microcosms. It was found that finely ground apatite rock could be used as a source of P by the groundwater microbiota, suggesting that this material could serve as a long-term P source in the funnel-and-gate treatment system.  相似文献   

17.
This article presents an approach for modeling the dissolution process of single component dense non-aqueous phase liquids (DNAPL), such as tetrachloroethene and trichloroethene, in a biologically reactive porous medium. In the proposed approach, the overall transport processes are conceptualized as three distinct reactions. Firstly, the dissolution (or dissolving) process of a residual DNAPL source zone is conceptualized as a mass-transfer limited reaction. Secondly, the contaminants dissolved from the DNAPL source are allowed to partition between sediment and water phases through a rate-limited sorption reaction. Finally, the contaminants in the solid and liquid phases are allowed to degrade by a set of kinetic-limited biological reactions. Although all of these three reaction processes have been researched in the past, little progress has been made towards understanding the combined effects of these processes. This work provides a rigorous mathematical model for describing the coupled effects of these three fundamental reactive transport mechanisms. The model equations are then solved using the general-purpose reactive transport code RT3D (Clement, 1997).  相似文献   

18.
Volatilization and subsequent biodegradation near the water Table make up a coupled natural attenuation pathway that results in significant mass loss of hydrocarbons. Rates of biodegradation and volatilization were documented twice 12 years apart at a crude-oil spill site near Bemidji, Minnesota. Biodegradation rates were determined by calibrating a gas transport model to O2, CO2, and CH4 gas-concentration data in the unsaturated zone. Reaction stoichiometry was assumed in converting O2 and CO2 gas-flux estimates to rates of aerobic biodegradation and CH4 gas-flux estimates to rates of methanogenesis. Model results indicate that the coupled pathway has resulted in significant hydrocarbon mass loss at the site, and it was estimated that approximately 10.52 kg/day were lost in 1985 and 1.99 kg/day in 1997. In 1985 3% of total volatile hydrocarbons diffusing from the floating oil were biodegraded in the lower 1 m of the unsaturated zone and increased to 52% by 1997. Rates of hydrocarbon biodegradation above the center of the floating oil were relatively stable from 1985 to 1997, as the primary metabolic pathway shifted from aerobic to methanogenic biodegradation. Model results indicate that in 1997 biodegradation under methanogenenic conditions represented approximately one-half of total hydrocarbon biodegradation in the lower 1 m of the unsaturated zone. Further downgradient, where substrate concentrations have greatly increased, total biodegradation rates increased by greater than an order of magnitude from 0.04 to 0.43 g/m2-day. It appears that volatilization is the primary mechanism for attenuation in early stages of plume evolution, while biodegradation dominates in later stages.  相似文献   

19.
石油烃的厌氧生物降解对油藏残余油气化开采的启示   总被引:1,自引:0,他引:1  
利用微生物将油藏中难以动用的原油就地转化为甲烷,以天然气的形式开采、或作为战略资源就地储备,从而大幅度提高油气资源的利用率,是当前国际上研究的前沿课题。本文综述了石油烃厌氧生物降解转化为甲烷的菌群结构、反应热力学和反应动力学等基础科学问题的最新研究进展,讨论了油藏残余油气化开采技术的可行性及开发潜力,提出了该技术进一步研究的方向。  相似文献   

20.
This article presents an approach for modeling the dissolution process of single component dense non-aqueous phase liquids (DNAPL), such as tetrachloroethene and trichloroethene, in a biologically reactive porous medium. In the proposed approach, the overall transport processes are conceptualized as three distinct reactions. Firstly, the dissolution (or dissolving) process of a residual DNAPL source zone is conceptualized as a mass-transfer limited reaction. Secondly, the contaminants dissolved from the DNAPL source are allowed to partition between sediment and water phases through a rate-limited sorption reaction. Finally, the contaminants in the solid and liquid phases are allowed to degrade by a set of kinetic-limited biological reactions. Although all of these three reaction processes have been researched in the past, little progress has been made towards understanding the combined effects of these processes. This work provides a rigorous mathematical model for describing the coupled effects of these three fundamental reactive transport mechanisms. The model equations are then solved using the general-purpose reactive transport code RT3D (Clement, 1997).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号