首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
 Parents were selected from a well-characterised Arabidopsis recombinant inbred line (RIL) population based on (1) their phenotype for flowering time or (2) marker and QTL information that had been assessed previously. The F2 offspring obtained from pairs of selected RILs was analysed for these traits, and the results obtained with these two methods of selection were compared. Selection based on marker and QTL information gave approximately the same result as selection based on phenotype. The relative high heritability of flowering time in Arabidopsis facilitated successful phenotypical selection. The difference in selection result that was anticipated to be in favour of the marker-assisted approach was therefore not observed. Received: 29 November 1997 / Accepted: 8 June 1998  相似文献   

2.
A computer program has been designed to manage marker information in recombinant inbred-line populations. The objective is to select pairs of inbred lines (either recombinant-inbred or doubled-haploid) to be intercrossed, in order to accumulate all or most favourable alleles, either with additive effects or with interactive effects. The population size required to have a 95% chance of obtaining the best line from a given cross is computed, taking into account the number of QTLs and the probability that no recombination event occurs in any of the QTL confidence intervals. It is shown that the accuracy of QTL location greatly affects selection efficiency and that a recurrent selection scheme is highly preferable for pyramiding many QTLs. An application to the bread-making quality improvement of wheat is presented. Received: 25 September 1998 / Accepted: 29 July 1999  相似文献   

3.
4.
Milling properties, protein content, and flour color are important factors in rice. A marker-based genetic analysis of these traits was carried out in this study using recombinant inbred lines (RILs) derived from an elite hybrid cross ’Shanyou 63’, the most-widely grown rice hybrid in production in China. Correlation analysis shows that the traits were inter-correlated, though the coefficients were generally small. Quantitative trait locus (QTL) analysis with both interval mapping (IM) and composite interval mapping (CIM) revealed that the milling properties were controlled by the same few loci that are responsible for grain shape. The QTL located in the interval of RM42-C734b was the major locus for brown rice yield, and the QTL located in the interval of C1087-RZ403 was the major locus for head rice yield. These two QTLs are the loci for grain width and length, respectively. The Wx gene plays a major role in determining protein content and flour color, and is modified by several QTLs with minor effect. The implications of the results in rice breeding were discussed. Received: 15 September 2000 / Accepted: 31 March 2001  相似文献   

5.
Mapping of QTL for downy mildew resistance in maize   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTLs) of maize involved in mediating resistance to Peronosclerospora sorghi, the causative agent of sorghum downy mildew (SDM), were detected in a population of recombinant inbred lines (RILs) derived from the Zea mays L. cross between resistant (G62) and susceptible (G58) inbred lines. Field tests of 94 RILs were conducted over two growing seasons using artificial inoculation. Heritability of the disease reaction was high (around 70%). The mapping population of the RILs was also scored for restriction fragment length polymorphic (RFLP) markers. One hundred and six polymorphic RFLP markers were assigned to ten chromosomes covering 1648 cM. Three QTLs were detected that significantly affected resistance to SDM combined across seasons. Two of these mapped quite close together on chromosome 1, while the third one was on chromosome 9. The percentage of phenotypic variance explained by each QTL ranged from 12.4% to 23.8%. Collectively, the three QTLs identified in this study explained 53.6% of the phenotypic variation in susceptibility to the infection. The three resistant QTLs appeared to have additive effects. Increased susceptibility was contributed by the alleles of the susceptible parent. The detection of more than one QTL supports the hypothesis that several qualitative and quantitative genes control resistance to P. sorghi.  相似文献   

6.
To characterize quantitative trait loci (QTLs), we used marker-assisted selection (MAS) to develop three nearly isogenic lines (NILs) differing only for the presence of a single, specific QTL (QTL-NILs) –Hd1, Hd2, and Hd3 – for heading date in rice. The three lines contained the chromosomal region of the target QTL from donor variety Kasalath(indica) in the genetic background of var. Nipponbare (japonica). To analyze epistatic interactions in pairs of these QTLs, we also used MAS to develop four combined QTL-NILs with 2 of the 3 QTLs or with all 3. Different daylength treatment testing of the QTL-NILs revealed that the three QTLs control photoperiod sensitivity. Genetic analysis of F2 populations derived from crosses between the three QTL-NILs with a single QTL using molecular markers revealed the existence of epistatic interactions between Hd1 and Hd2, and Hd2 and Hd3. These interactions were also confirmed by the analysis of combined QTL-NILs under different daylength conditions. The existence of an epistatic interaction between Hd1 and Hd3 was also clarified. Based on these results, we suggest that the Kasalath allele of Hd3 does not affect photoperiod sensitivity by itself but that it is involved in enhancement of the expression of the Nipponbare alleles of Hd1 and Hd2. Received: 22 October 1999 / Accepted: 21 March 2000  相似文献   

7.
DNA markers were used to identify quantitative trait loci (QTLs) for plant height, ear height, and three flowering traits in hybrid progeny of two generations (F2:3, F6:8) of lines from a Mo17×H99 maize population. For both generations, testcross (TC) progeny were developed by crossing the lines to three inbred testers (B91, A632, B73). The hybrid progeny from the two generations were evaluated at the same locations but in different years as per an early generation testing program. QTLs were identified within each TC population and for mean testcross (MTC) performance. Overall, more QTLs were detected in the F6:8 than the F2:3 generation. Totalled over all five traits, 41 (B91) to 69% (B73) of the QTLs for tester effects and 67% of the QTLs for MTC detected in the F2:3 generation were verified in the F6:8 generation. Although differences in relative rank of the QTL effects across generations were observed, especially for the flowering traits, parental contributions were nearly always consistent. Several (8–11) QTLs were identified with effects for all three tester populations and for all traits except the anthesis-silk interval, which had only two such regions. Over all five traits, previous evaluations in this population identified 26 QTLs with consistent effects for two (F2:3, F6:8) inbred-progeny evaluations, and 20 (77%) were also associated with MTC in at least one of the generations evaluated herein. In all instances of common inbred and TC QTLs, parental contributions were the same. Received: 26 November 1999 / Accepted: 18 April 2000  相似文献   

8.
 Quantitative trait loci (QTLs) for grain quality, yield components and other traits were investigated in two Sorghum caudatum×guinea recombinant inbred line (RIL) populations. A total of 16 traits were evaluated (plant height, panicle length, panicle compactness, number of kernels/panicle, thousand-kernel weight, kernel weight/panicle, threshing percentage, dehulling yield, kernel flouriness, kernel friability, kernel hardness, amylose content, protein content, lipid content, germination rate and molds during germination and after harvest) and related to two 113- and 100-point base genetic maps using simple (SIM) and composite (CIM) interval mapping. The number, effects and relative position of QTLs detected in both populations were generally in agreement with the distributions, heritabilities and correlations among traits. Several chromosomal segments markedly affected multiple traits and were suspected of harbouring major genes. The positions of these QTLs are discussed in relation to previously reported studies on sorghum and other grasses. Many QTLs, depending on their relative effects and position, could be used as targets for marker-assisted selection and provide an opportunity for accelerating breeding programmes. Received: 14 February 1998 / Accepted: 4 March 1998  相似文献   

9.
Comparative mapping of QTLs determining the plant size of Brassica oleracea   总被引:2,自引:0,他引:2  
Quantitative trait loci (QTLs) influencing the size of leaves and stems were detected by restriction fragment length polymorphisms (RFLP) in three Brassica oleracea F2 populations derived from crosses of rapid-cycling Brassica to three B. oleracea varieties, Cantanese, Pusa Katki and Bugh Kana. Morphological traits, including lamina length, lamina width, petiole length, stem length, stem width and node number were evaluated. A total of 47 QTLs were detected based on a LOD threshold of 2.5. Through comparative mapping we inferred that the 47 QTLs might reflect variation in as few as 35 different genetic loci, and 28 ancestral genes. For the trait of lamina length, we identified QTLs corresponding to five ancestral genes, which mapped near the locations corresponding to five known Arabidopsis mutations, rev, axr1, axr3, axr4 and as2. For the trait of stem length, we identified QTLs corresponding to five ancestral genes, which mapped near the locations corresponding to nine known Arabidopsis mutations, dw3, dw6, acl5, dw7, ga4, ga1, dw1, axr1 and axr3. The possibility of using Arabidopsis/Brassica as a model to extrapolate genetic information into other crops was examined. Received: 30 October 2000 / Accepted: 24 November 2000  相似文献   

10.
 A BC3 population previously developed from a backcross of Lycopersicon peruvianum, a wild relative of tomato, into the cultivated variety L. esculentum was analyzed for QTLs. Approximately 200 BC4 families were scored for 35 traits in four locations worldwide. One hundred and sixty-six QTLs were detected for 29 of those traits. For more than half of those 29 traits at least 1 QTL was detected for which the presence of the wild allele was associated with an agronomically beneficial effect despite the inferior phenotype of the wild parent. Eight QTLs for fruit weight could be followed through the BC2, BC3, and BC4, generations, supporting the authenticity of these QTLs. Comparisons were made between the QTLs found in this study and those found in studies involving two other wild species; the results showed that while some of these QTLs can be presumed to be allelic, most of the QTLs detected in this study are ones not previously discovered. Received: 9 April 1997 / Accepted: 20 May 1997  相似文献   

11.
We report here the RFLP mapping of quantitative trait loci (QTLs) which affect some important agronomic traits in cultivated rice. An anther culture-derived doubled-haploid (DH) population was established from a cross between indica and japonica rice varieties. A molecular linkage map comprising 137 markers was constructed based on this population which covered the rice genome at intervals of 14.8 cM on average. The linkage map was used to locate QTLs for such important agronomic traits as heading date, plant height, number of spikelets per panicle, number of grains per panicle, 1 000-grain weight and the percentage of seed set, by interval mapping. Evidence of genotype-by-environment interaction was found by comparing QTL maps of the same population grown in three diverse environments. A total of 22 QTLs for six agronomic traits was detected which were significant in at least one environment, but only seven were significant in all three environments; seven were significant in two environments and eight could only be detected in a single environment. However, QTLs-by-environment interaction was trait dependent. QTLs for spikelets and grains per panicle were common across environments while traits like heading date and plant height were more sensitive to environment. Received: 22 February 1996 / Accepted: 10 May 1996  相似文献   

12.
Quantitative trait locus (QTL) analysis was carried out with 167 recombinant inbred lines (RILs) of barley derived from a cross between Tadmor and Er/Apm to identify the genomic regions controlling traits related to plant water status and osmotic adjustment (OA). The experiment was conducted in a growth chamber using a random incomplete block design (nine blocks). Relative water content (RWC) and leaf osmotic potential (ψπ) were measured at 100% and 14% of the field capacity on 105 RILs in each block. In addition, the water-soluble carbohydrate concentration (WSC) was measured in the four first-blocks. The leaf osmotic potential at full turgor (ψπ100), the water-soluble carbohydrate concentration at full turgor (WSC100), and also OA, the accumulation of water-soluble carbohydrates (dWSC100), the contribution of a change in water content to OA (CWC) and of the net solute accumulation to OA (SA) have also been calculated. In a previous paper (Teulat et al. 1998), 12 QTLs were identified for RWC, ψπ, ψπ100 and OA with adjusted means (block effects and pot-within-block effects fixed) with an incomplete genetic map. In the present paper, a more-saturated and improved map is described. A new QTL analysis as been performed with adjusted means. The new QTLs identified for previous evaluated traits, as well as the QTLs for the new traits, are presented. Eight additional regions (22 QTLs) were identified which increased to 13 the total number of chromosomal regions (32 QTLs) controlling traits related to plant water status and/or osmotic adjustment in this barley genetic background. The results emphasise the value of the experimental design employed for the evaluation of traits difficult to assess in genetic studies. The putative target regions for drought-tolerance improvement are discussed combining arguments on the consistency of QTLs and, when possible, the physiological value of QTLs (trait relevance, syntenic relationships and clustering of QTLs). Received: 8 March 2000 / Accepted: 18 October 2000  相似文献   

13.
Genetic factors controlling quantitative inheritance of grain yield and its components have not previously been investigated by using replicated lines of an elite maize (Zea mays L.) population. The present study was conducted to identify quantitative trait loci (QTLs) associated with grain yield and grain-yield components by using restriction fragment length polymorphism (RFLP) markers. A population of 150 random F23 lines was derived from the single cross of inbreds Mo17 and H99, which are considered to belong to the Lancaster heterotic group. Trait values were measured in a replicated trial near Ames, Iowa, in 1989. QTLs were located on a linkage map constructed with one morphological and 103 RFLP loci. QTLs were found for grain yield and all yield components. Partial dominance to overdominance was the primary mode of gene action. Only one QTL, accounting for 35% of the phenotypic variation, was identified for grain yield. Two to six QTLs were identified for the other traits. Several regions with pleiotropic or linked effects on several of the yield components were detected.  相似文献   

14.
Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize   总被引:1,自引:0,他引:1  
Pollen thermotolerance is an important component of the adaptability of crops to high temperature stress. The tolerance level of the different genotypes in a population of 45 maize recombinant inbred lines was determined as the degree of injury caused by high temperature to pollen germinability (IPGG) and pollen tube growth (IPTG) in an in vitro assay. Both traits revealed quantitative variability and high heritability. The traits were genetically dissected by the analysis of molecular markers using 184 mapped restriction fragment length polymorphisms (RFLPs). Significant genetic correlation between the markers and the trait allowed us to identify a minimum number of five quatitative trait loci (QTLs) for IPGG and six QTLs for IPTG. Their chromosomal localization indicated that the two characters are controlled by different sets of genes. In addition, IPGG and IPTG were shown to be basically independent of the pollen germination ability and pollen tube growth rate under non-stress conditions. These results are discussed in relation to their possible utilization in a breeding strategy for the improvement of thermotolerance in maize.  相似文献   

15.
Drought stress during the reproductive stage is one of the most important environmental factors reducing the grain yield and yield stability of pearl millet. A QTL mapping approach has been used in this study to understand the genetic and physiological basis of drought tolerance in pearl millet and to provide a more-targeted approach to improving the drought tolerance and yield of this crop in water-limited environments. The aim was to identify specific genomic regions associated with the enhanced tolerance of pearl millet to drought stress during the flowering and grain-filling stages. Testcrosses of a set of mapping-population progenies, derived from a cross of two inbred pollinators that differed in their response to drought, were evaluated in a range of managed terminal drought-stress environments. A number of genomic regions were associated with drought tolerance in terms of both grain yield and its components. For example, a QTL associated with grain yield per se and for the drought tolerance of grain yield mapped on linkage group 2 and explained up to 23% of the phenotypic variation. Some of these QTLs were common across stress environments whereas others were specific to only a particular stress environment. All the QTLs that contributed to increased drought tolerance did so either through better than average maintenance (compared to non-stress environments) of harvest index, or harvest index and biomass productivity. It is concluded that there is considerable potential for marker-assisted backcross transfer of selected QTLs to the elite parent of the mapping population and for their general use in the improvement of pearl millet productivity in water-limited environments. Received: 15 November 2000 / Accepted: 12 April 2001  相似文献   

16.
A method is presented for the selection of parents with the aim of obtaining improved genotypes in the progeny of a cross. The procedure is designed to select in several unrelated traits simultaneously and is based on the selection of molecular markers that are linked to QTLs. The method was compared with conventional phenotypic selection in simulation experiments for a number of genetic structures underlying the traits and several types of parental populations. Although the method in general provides good results, some of the underlying assumptions may be violated quite easily, thereby reducing the applicability of the procedure in practice. Received: 10 September 1999 / Accepted: 24 August 2000  相似文献   

17.
Clubroot, caused by Plasmodiophora brassicae, is a damaging disease of Brassica napus. Genetic control and mapping of loci involved in high and partial quantitative resistance expressed against two single spore isolates (Pb137–522 and K92–16) were studied in the F1 and DH progenies of the cross Darmor-bzh (resistant) x Yudal (susceptible). The high level of resistance expressed by Darmor-bzh to isolate Pb137–522 was found to be mainly due to a major gene, which we have named Pb-Bn1, located on linkage group (LG) DY4. Partial quantitative resistance showed by Darmor-bzh to the K92–16 isolate arose from the association of at least two additive QTLs detected on LGs DY4 and DY15; the QTL on DY4, explaining 19% of the variance, was mapped at the same position as the major gene Pb-Bn1. Epistatic interactions between nine regions with or without additive effects were detected. The total phenotypic variation accounted for by additive and epistatic QTLs ranged from 62% to 81% depending on the isolate. For one isolate, the relative effect due to additivity was similar to that due to epistasis. Received: 10 November 1999 / Accepted:18 February 2000  相似文献   

18.
We have constructed a rice function map by collating the results on quantitative trait loci (QTLs) for 23 important physiological and agronomic characters (including 13 newly measured traits) obtained using backcross inbred lines of japonica Nipponbare×indica Kasalath. Using these materials, The Rice Genome project (RGP) has developed a high-density genetic map. QTLs controlling yield did not overlap with those controlling the morphological and physiological traits supposed to relate to yield, such as photosynthetic ability. This result suggests that these traits do not influence yield, at least in this genetic background and environment. QTLs controlling yield also did not overlap with the structural genes controlling carbon metabolism (rbcS, cytosolic or plastidic fructose-1,6-bisphosphate, R-enzyme, and sucrose synthase).The combination of a function map and results from the RGP can be advantageous. The utility of this map is discussed. Received: 1 October 1999 / Accepted: 28 July 2000  相似文献   

19.
Genetic control for two in vitro organogenesis traits, the number of shoots per explant plated (S/E) and the number of shoots per regenerating explant (S/RE), was investigated in 75 recombinant inbred lines (RILs) of sunflower and their two parents (PAC-2 and RHA-266). Genetic variability was observed among the 75 RILs for the organogenesis traits studied. Some RILs presented significant differences when compared with the best parental line (RHA-266). Genetic gain, in terms of the percentage of the best parent, for 32% of the selected RILs was significant. A set of 99RILs from the same cross including the 75 mentioned above was screened with 333 AFLP markers and a linkage map was constructed based on 264 linked loci. Six putative QTLs for the S/RE (tentatively named osr) and seven QTLs for the S/E (ose) trait were detected using composite interval mapping. For each trait, the QTLs explained 52% (ose) and 67% (osr) of the total phenotypic variance. These results suggested that additive gene effects predominate in explaining a large proportion of the observed genetic variation associated with regeneration ability. The coincidental location of QTLs for S/E and S/RE is discussed. Received: 20 September 1999 / Accepted: 16 May 2000  相似文献   

20.
Evaluation of root traits in rainfed lowland rice is very difficult. Molecular genetic markers could be used as an alternative strategy to phenotypic selection for the improvement of rice root traits. This research was undertaken to map QTLs associated with five root traits using RFLP and AFLP markers. Recombinant inbred lines (RILs) were developed from two indica parents, IR58821–23-B-1–2-1 and IR52561-UBN-1–1-2, that were adapted to rainfed lowland production systems. Using wax-petrolatum layers to simulate a hardpan in the soil, 166 RILs were evaluated for total root number (TRN), penetrated root number (PRN), root penetration index (RPI, the ratio of PRN to TRN), penetrated root thickness (PRT) and penetrated root length (PRL) under greenhouse conditions during the summer and the fall of 1997. A genetic linkage map of 2022 cM length was constructed comprising 303 AFLP and 96 RFLP markers with an average marker space of 5.0 cM. QTL analysis via interval mapping detected 28 QTLs for these five root traits, which were located on chromosomes 1, 2, 3, 4, 6, 7, 10 and 11. Individual QTLs accounted for between 6 and 27% of the phenotypic variation. Most of the favorable alleles were derived from the parent IR58821–23-B-1–2-1, which was phenotypically superior in root traits related to drought resistance. Three out of six QTLs for RPI were detected in both summer and fall experiments and they also were associated with PRN in both experiments. Out of eight QTLs for RPT, five were common in both seasons. Two genomic regions on chromosome 2 were associated with three root traits (PRN, PRT and RPI), whereas three genomic regions on chromosomes 2 and 3 were associated with two root traits (PRT and RPI). Two QTLs affecting RPI and two QTLs affecting PRT were also found in similar genomic regions in other rice populations. The consistent QTLs across genetic backgrounds and the common QTLs detected in both experiments should be good candidates for marker-assisted selection toward the incorporation of root traits in a drought resistance breeding program, especially for rainfed lowland rice. Received: 17 November 1999 / Accepted: 19 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号