首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Secretin has a single histidine residue located at the amino terminus which plays a crucial role in its biological activity. The chemical properties, viz. pK and reactivity, of the alpha-amino and imidazole groups of this residue were determined at a secretin concentration of 10(-6) M in 0.1 M KCl at 37 degrees C. Competitive labelling using tritiated 1-fluoro-2,4-dinitrobenzene (DNP-F) as the labelling reagent was the experimental approach employed. The alpha-amino group was found to have a pK value of 8.83 and a reactivity 5-times that of the alpha-amino group in the model compound, histidylglycine. For the imidazole function a pK value of 8.24 and a reactivity 26-times that of the imidazole function in histidylglycine was found. Both these groups in secretin had pK values which were shifted one pK unit higher than in histidylglycine, but like the model compound the reactivity of the imidazole function was still linked to the state of ionization of the alpha-amino group. These observations are interpreted as evidence for the existence of a major conformational state in dilute aqueous solution in which the amino-terminal histidine of secretion is interacting with a negatively charged carboxyl group.  相似文献   

2.
Research into ion-exchange properties of cell walls isolated from thallus of red seaweed Phyllophora crispa was carried out. Ion-exchange capacity and the swelling coefficient of the red alga cell walls were estimated at various pH values (from 2 to 12) and at constant ionic strength of a solution (10 mM). It was established that behavior of cell walls as ion-exchangers is caused by the presence in their matrix of two types of cation-exchange groups and amino groups. The amount of the functional group of each type was estimated, and the corresponding values of pK(a) were calculated. It can be assumed that ionogenic groups with pK(a) -5 are carboxyl groups of uronic acids, and ionogenic groups with pK(a) -7.5 are carboxyl groups of the proteins. Intervals of pH in which cation-exchange groups are ionized and can take part in exchange reactions with cations in the environment are defined. It was found that protein was a major component of cell wall polymeric matrix because its content was 36%.  相似文献   

3.
The Poisson-Boltzmann method was used to compute the pK(a) values of titratable residues in a set of class C beta-lactamases. In these calculations, the pK(a) of the phenolic group of residue Tyr150 is the only one to stand out with an abnormally low value of 8.3, more than one pK(a) unit lower than the measured reference value for tyrosine in solution. Other important residues of the catalytic pocket, such as the conserved Lys67, Lys315, His314, and Glu272 (hydrogen-bonded to the ammonium group of Lys315), display normal protonation states at neutral pH. pK(a) values were also computed in catalytically impaired beta-lactamase mutants. Comparisons between the relative k(cat) values and the Tyr150 pK(a) value in these mutants revealed a striking correlation. In active enzymes, this pK(a) value is always lower than the solution reference value while it is close to normal in inactive enzymes. These results thus support the hypothesis that the phenolate form of Tyr150 is responsible for the activation of the nucleophilic serine. The possible roles of Lys67 and Lys315 during catalysis are also discussed.  相似文献   

4.
Previous studies of the low molecular mass family 11 xylanase from Bacillus circulans show that the ionization state of the nucleophile (Glu78, pK(a) 4.6) and the acid/base catalyst (Glu172, pK(a) 6.7) gives rise to its pH-dependent activity profile. Inspection of the crystal structure of BCX reveals that Glu78 and Glu172 are in very similar environments and are surrounded by several chemically equivalent and highly conserved active site residues. Hence, there are no obvious reasons why their apparent pK(a) values are different. To address this question, a mutagenic approach was implemented to determine what features establish the pK(a) values (measured directly by (13)C NMR and indirectly by pH-dependent activity profiles) of these two catalytic carboxylic acids. Analysis of several BCX variants indicates that the ionized form of Glu78 is preferentially stabilized over that of Glu172 in part by stronger hydrogen bonds contributed by two well-ordered residues, namely, Tyr69 and Gln127. In addition, theoretical pK(a) calculations show that Glu78 has a lower pK(a) value than Glu172 due to a smaller desolvation energy and more favorable background interactions with permanent partial charges and ionizable groups within the protein. The pK(a) value of Glu172 is in turn elevated due to electrostatic repulsion from the negatively charged glutamate at position 78. The results also indicate that all of the conserved active site residues act concertedly in establishing the pK(a) values of Glu78 and Glu172, with no particular residue being singly more important than any of the others. In general, residues that contribute positive charges and hydrogen bonds serve to lower the pK(a) values of Glu78 and Glu172. The degree to which a hydrogen bond lowers a pK(a) value is largely dependent on the length of the hydrogen bond (shorter bonds lower pK(a) values more) and the chemical nature of the donor (COOH > OH > CONH(2)). In contrast, neighboring carboxyl groups can either lower or raise the pK(a) values of the catalytic glutamic acids depending upon the electrostatic linkage of the ionization constants of the residues involved in the interaction. While the pH optimum of BCX can be shifted from -1.1 to +0.6 pH units by mutating neighboring residues within the active site, activity is usually compromised due to the loss of important ground and/or transition state interactions. These results suggest that the pH optima of an enzyme might be best engineered by making strategic amino acid substitutions, at positions outside of the "core" active site, that electrostatically influence catalytic residues without perturbing their immediate structural environment.  相似文献   

5.
Position beta 82 in human hemoglobin (Hb) is normally occupied by lysine, a positively charged residue that is involved in the binding of anionic cofactors. This residue is substituted by a neutral residue in Hb Providence Asn and by a negatively charged residue in Hb Providence Asp. Hb Providence Asp shows more differences from Hb A than does Hb Providence Asn in studies of the kinetics and equilibria of ligand binding. For both forms, homotropic (cooperative) interactions are normal with n values of 2.5 to 2.7, while heterotropic (pH and anion) interactions are reduced greatly. The reduction in anion sensitivity is attributed to the absence of a positive residue at position beta 82. Reduction in pH sensitivity may be due to a ligand-linked change in the pK of a neighboring residue, beta 143 histidine, which normally is not a Bohr group. This change in pK would act in opposition to the normal Bohr effect. Reduction in the net positive charge of the central cavity has a further consequence. Relative to Hb A, both Hb Providence Asn and Hb Providence Asp show decreased oxygen affinities at neutral pH in the absence of cofactors. This suggests that in Hb A the binding of anionic cofactors directly influences the oxygen affinity by neutralizing the charged groups of the diphosphoglycerate binding site and thus stabilizing the low affinity (T) conformation. From pH 6 to 9 in the presence of 1 M NaCl, where all the charged groups may be masked, the oxygen-binding properties of Hb A and the Hb Providence mutants are identical. Moreover, subunit dissociation of the liganded Hb Providence mutants appears to be increased, as is known to occur for Hb A in the presence of high salt. The results obtained with Hb Providence Asn and Hb Providence Asp illustrate how single amino acid substitutions can modify hemoglobins' pH and anion interactions without altering cooperative interactions between subunits. The alteration in cofactor effects observed with these mutants also illustrates differences between the allosteric effects induced by organic and inorganic anions.  相似文献   

6.
The variation with pH of the kinetic parameters associated with the mutase and dehydrogenase reactions catalyzed by chorismate mutase-prephenate dehydrogenase has been determined with the aim of elucidating the role that ionizing amino acid residues play in binding and catalysis. The pH dependency of log V for the dehydrogenase reaction shows that the enzyme possesses a single ionizing group with a pK value of 6.5 that must be unprotonated for catalysis. This same group is observed in the V/Kprephenate, as well as in the V/KNAD, profile. The V/Kprephenate profile exhibits a second ionizing residue with a pK value of 8.4 that must be protonated for the binding of prephenate to the enzyme. For the mutase reaction, the V/Kchorismate profile indicates the presence of three ionizing residues at the active site. Two of these residues, with similar pK values of about 7, must be protonated, while the third, with a pK value of 6.3, must be unprotonated. It can be concluded that all three groups are concerned with the binding of chorismate to the enzyme since the maximum velocity of the mutase reaction is essentially independent of pH. This conclusion is confirmed by the finding that the Ki profile for the competitive inhibitor, (3-endo,8-exo)-8-hydroxy-2-oxabicyclo[3.3]non-6-ene-3,5-dicarboxylic acid, shows the same three ionizing groups as observed in the V/Kchorismate profile. By contrast, the Ki profile for carboxyethyldihydrobenzoate shows only one residue, with a pK value of 7.3, that must be protonated for binding of the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Previous studies of ubiquitin disclosed numerous charge-charge interactions on the protein's surface. To investigate how neighboring residues influence the strength of these interactions, double-mutant cycles are combined with pK(a) determinations by 2D NMR. More specifically, the environment around the Asp21-Lys29 ion pair has been altered through mutations at position 25, which is an asparagine in mammalian ubiquitin and a positively-charged residue in many other ubiquitin-like proteins. The pK(a) value of Asp21 decreases by 0.4 to 0.7 pH unit when Asn25 is substituted with a positively charged residue, suggesting a new and favorable ion pair interaction between positions 21 and 25. However, analysis of double mutants reveals that the favorable interaction between Asp21 and Lys29 is weakened when position 25 is a positively charged residue. Interestingly, while the pK(a) value of His25 in the N25H variant agrees with model compound values, additional mutants reveal that this agreement is fortuitous, resulting from a balance of favorable and unfavorable interactions; similar results were observed previously for Glu34 in ubiquitin and His8 in staphylococcal nuclease. Ionizable groups may thus have pK(a) values similar to model compound values and yet still be involved in significant interactions with other protein groups. One surprising result of introducing positively charged residues at position 25 is a new interaction between Lys29 and Glu18, an interaction not present in wild-type ubiquitin. This unanticipated result illustrates a key advantage of using NMR to determine pK(a) values for many residues simultaneously in the variant proteins. Overall, the strength of an interaction between two residues at the surface of ubiquitin is sensitive to the identity of neighboring residues. The results also demonstrate that relatively conservative and common point mutations such as substitutions of polar with charged residues and vice versa can have effects on interactions beyond the site of mutation per se.  相似文献   

8.
The authors studies pH-dependencies of the kinetic parameters (Vm, KM, Vm/KM) and constants of competitive inhibition by phenylacetic acid of penicillinamidase-catalyzed hydrolysis of benzylpenicillin. The experimental data are in agreement with the assumption according to which there are 3 equilibrium ionogenic forms of the enzyme and enzyme-substrate (or enzyme-inhibitor) complexes, i.e. acidic, neutral and alkaline, the neutral form being the only active form of the Michaelis complex. Values of pK in the ionogenic groups controlling interconversions of both the free enzyme (pK1 6.1 and pK2 7.6) and of the enzyme-substrate complex (pKa 6.1 and pK2 10.2 or the enzyzme-inhibitor complex (pK'1 6.1 and pK'2 9.5) were determined. From this and the previously published results it was concluded that the group with pK 6.1 was involved in the catalysis and the group with pK 10.2 in the maintenance of the active conformation of the active centre of penicillinamidase. The ionogenic group with pK 7.6 was apparently involved in the enzyme-substrate binding.  相似文献   

9.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We examined the block of voltage-dependent rat skeletal muscle sodium channels by derivatives of mu-conotoxin GIIIA (muCTX) having either histidine, glutamate, or alanine residues substituted for arginine-13. Toxin binding and dissociation were observed as current fluctuations from single, batrachotoxin-treated sodium channels in planar lipid bilayers. R13X derivatives of muCTX only partially block the single-channel current, enabling us to directly monitor properties of both muCTX-bound and -unbound states under different conditions. The fractional residual current through the bound channel changes with pH according to a single-site titration curve for toxin derivatives R13E and R13H, reflecting the effect of changing the charge on residue 13, in the bound state. Experiments with R13A provided a control reflecting the effects of titration of all residues on toxin and channel other than toxin residue 13. The apparent pKs for the titration of residual conductance are shifted 2-3 pH units positive from the nominal pK values for histidine and glutamate, respectively, and from the values for these specific residues, determined in the toxin molecule in free solution by NMR measurements. Toxin affinity also changes dramatically as a function of pH, almost entirely due to changes in the association rate constant, kon. Interpreted electrostatically, our results suggest that, even in the presence of the bound cationic toxin, the channel vestibule strongly favors cation entry with an equivalent local electrostatic potential more negative than -100 mV at the level of the "outer charged ring" formed by channel residues E403, E758, D1241, and D1532. Association rates are apparently limited at a transition state where the pK of toxin residue 13 is closer to the solution value than in the bound state. The action of these unique peptides can thus be used to sense the local environment in the ligand--receptor complex during individual molecular transitions and defined conformational states.  相似文献   

11.
The surface charges and the isoelectric points (pI) as well as changes in these values depending on the lipid composition are determined for erythrocyte membranes of rat, rabbit, bull and man under conditions of hypercholesterinemia, atherosclerosis, D-hypovitaminosis and in experiments in vitro using the techniques of microelectrophoresis and positive charged ligands (proton, probe astraphloxin) binding. The ionogenic groups forming charge and essential differences in their nature (pK) and quantity depending on the erythrocyte type are found. Inverse correlation between the content of cholesterol and cholesterol ethers and the value of erythrocyte membrane surface charges was established for each sample examined. A comparative evaluation of the methods used was conducted.  相似文献   

12.
M Flogel  R L Biltonen 《Biochemistry》1975,14(12):2603-2609
The proton association behavior of ribonuclease A and its complex with 3'-cytosine monophosphate has been thermodynamically characterized in the pH range 4--8 at 25 degrees, mu = 0.05. Calorimetric and potentiometric titration data have been used to estimate the apparent pK values and enthalpy values for protonation of the four histidine residues of the protein, deltaHp. In the free enzyme the pK values were deduced to be 5.0, 5.8, 6.6, and 6.7 and deltaHp deduced to be -6.5, -6.5, -6.5, and -24 kcal/mol for residues 119, 12, 105, and 48, respectively. For the nucleotide-enzyme complex it was concluded that the apparent pK values of residues 119, 12, and 48 increased to an average value of about 7.2, the deltaHp values remaining constant for all histidine groups except 48. It was also concluded that only the dianionic phosphate form of the nucleotide inhibitor is bound to the enzyme in this pH range. These results are consistent with a thermodynamic model for the binding reaction in which inhibitor-enzyme association is coupled to the ionization of three imidazole residues (12, 119, and 48) and the interaction between the negative phosphate moiety of the inhibitor and the positively charged residues 12 and 119 is purely electrostatic. However, the "interaction" with residue 48 probably involves a conformational rearrangement of the macromolecule.  相似文献   

13.
Dennison C  Lawler AT 《Biochemistry》2001,40(10):3158-3166
The effect of pH on Cu(I) and Cu(II) umecyanin (UCu), a phytocyanin obtained from horseradish roots, has been studied by electronic and NMR spectroscopy and using direct electrochemical measurements. A pK(a) value of approximately 9.5-9.8 is observed for the alkaline transition in UCu(II), and this leads to a slightly altered active site structure, as indicated by the changes in the paramagnetic 1H NMR spectrum. Electrochemical studies show that the pK(a) value for this transition in UCu(I) is 9.9. The alkaline transition is caused by the deprotonation of a surface lysine residue, with Lys96 being the most likely candidate. The isotropically shifted resonances in the (1)H NMR spectrum of UCu(II) also shift upon lowering the pH (pK(a) 5.8), and this can be assigned to the protonation of the surface (noncoordinating) His65 residue. This histidine titrates in UCu(I) with a pK(a) of 6.3. The reduction potential of the protein in this range is also dependent on pH, and pK(a) values matching those from NMR, for the two oxidation states of the protein, are obtained. There is no evidence for either of the active site histidines (His44 and His90) titrating in UCu(I) in the pH range studied (down to pH 3.7). Also highlighted in these studies are the remarkable active site similarities between umecyanin and the other phytocyanins which possess an axial Gln ligand.  相似文献   

14.
Delta(5)-3-Ketosteroid isomerase catalyzes cleavage and formation of a C-H bond at a diffusion-controlled limit. By determining the crystal structures of the enzyme in complex with each of three different inhibitors and by nuclear magnetic resonance (NMR) spectroscopic investigation, we evidenced the ionization of a hydroxyl group (pK(a) approximately 16.5) of an inhibitor, which forms a low barrier hydrogen bond (LBHB) with a catalytic residue Tyr(14) (pK(a) approximately 11.5), and the protonation of the catalytic residue Asp(38) with pK(a) of approximately 4.5 at pH 6.7 in the interaction with a carboxylate group of an inhibitor. The perturbation of the pK(a) values in both cases arises from the formation of favorable interactions between inhibitors and catalytic residues. The results indicate that the pK(a) difference between catalytic residue and substrate can be significantly reduced in the active site environment as a result of the formation of energetically favorable interactions during the course of enzyme reactions. The reduction in the pK(a) difference should facilitate the abstraction of a proton and thereby eliminate a large fraction of activation energy in general acid/base enzyme reactions. The pK(a) perturbation provides a mechanistic ground for the fast reactivity of many enzymes and for the understanding of how some enzymes are able to extract a proton from a C-H group with a pK(a) value as high as approximately 30.  相似文献   

15.
The catalytic amino acid residues of the extracellular beta-D-xylosidase (beta-D-xyloside xylohydrolase, EC 3.2.1.37) from Aspergillus carbonarius was investigated by the pH dependence of reaction kinetic parameters and chemical modifications of the enzyme. The pH dependence curves gave apparent pK values of 2.7 and 6.4 for the free enzyme, while pK value of 4.0 was obtained for the enzyme-substrate complex using p-nitrophenyl beta-D-xyloside as a substrate. These results suggested that a carboxylate group and a protonated group--presumably a histidine residue--took part in the binding of the substrate but only a carboxylate group was essential in the substrate cleavage. Carbodiimide- and Woodward's reagent K-mediated chemical modifications of the enzyme also supported that a carboxylate residue, located in the active center, was fundamental in the catalysis. The pH dependence of inactivation revealed the involvement of a group with pK value of 4.4, proving that a carboxylate residue relevant for hydrolysis was modified. During modification V(max) decreased to 10% of that of the unmodified enzyme and K(m) remained unchanged, supporting that the modified carboxylate group participated in the cleavage and not in the binding of the substrate. We synthesized and tested a new, potential affinity label, N-bromoacetyl-beta-d-xylopyranosylamine for beta-D-xylosidase. The A. carbonarius beta-D-xylosidase was irreversible inactivated by N-bromoacetyl-beta-D-xylopyranosylamine. The competitive inhibitor beta-D-xylopyranosyl azide protected the enzyme from inactivation proving that the inactivation took place in the active center. Kinetic analysis indicated that one molecule of reagent was necessary for inactivation of one molecule of the enzyme.  相似文献   

16.
Fedosova NU  Esmann M 《Biochemistry》2007,46(31):9116-9122
Investigation of the ionic strength effect on the interactions between nucleotides (ATP and ADP) and Na,K-ATPase in a broad pH range was aimed at revealing pK values of the charged groups of the interacting species. Ionic strength experiments suggested that an amino acid residue with a pK > 8.0 is part of the protein binding site. A combination of equilibrium and transient experiments at various pH values allowed for the characterization of the groups electrostatically involved in either the association process (kon) or the stability of the preformed complexes (koff). Two groups (pK1 = 6.7 and pK2 = 8.4) appear to be important for the proper organization of the binding site and, therefore, the association reaction. Moreover, deprotonation of the basic group completely precludes association. pH dependencies of the dissociation rate constants for ATP and ADP are very different. An increase in pH from 5 to 9.5 induces a 9-fold increase in koff for ATP, whereas koff for ADP decreases 4-fold between pH 5 and 8, and decreases further in the alkaline region. A comparison of the pH dependencies for koff for ATP and ADP suggests two effects: (1) at acidic pH, the value of the total negative charge of the nucleotide determines the tightness of binding; and (2) short-range interactions involving the terminal phosphate group are important for nucleotide dissociation from the site. The difference in the pH dependencies of koff for the nucleotides suggests the existence of positive charges in close proximity to Asp369, relieving the repulsion between the gamma-phosphate of ATP and Asp369.  相似文献   

17.
To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even at pH(O) values as low as 9.9. The dependence of K(O)(I) on pH(O) can be explained by a model with one titratable site with pK 9.5 +/- 0.2 (probably lysine), which increases anion affinity for the external transport site when it is in the positively charged form. A more complex model, analogous to one recently proposed by Bjerrum (1992), with two titratable sites, one with pK 9.3 +/- 0.3 (probably lysine) and another with pK > 11 (probably arginine), gives a slightly better fit to the data. Thus, titratable positively charged residues seem to be functionally important for the binding of substrate anions to the outward-facing anion transport site. In addition, analysis of Dixon plot slopes for L inhibition of Cl- exchange at different pH 0 values, coupled with the assumption that pH(O) has parallel effects on external I- and Cl- binding, indicates that k', the rate-constant for inward translocation of the complex of Cl- with the extracellular transport site, decreases with increasing pH(O). The data are compatible with a model in which titration of the pK 9.3 residue decreases k to 14 +/- 10% of its value at neutral pH(O). This result, however, together with Bjerrum's (1992) observation that the maximum flux J(M)) increases 1.6- fold when this residue is deprotonated, makes quantitative predictions that raise significant questions about the adequacy of the two titratable site ping-pong model or the assumptions used in analyzing the data.  相似文献   

18.
The cytotoxic ribonuclease alpha-sarcin is the best characterized member of the ribotoxin family. Ribotoxins share a common structural core, catalytic residues, and active site topology with members of the broader family of nontoxic microbial extracellular RNases. They are, however, much more specific in their biological action. To shed light on the highly specific alpha-sarcin activity, we have evaluated the structural and electrostatic interactions of its charged groups, by combining the structural and pK(a) characterization by NMR of several variants with theoretical calculations based on the Tanford-Kirkwood and Poisson-Boltzmann models. The NMR data reveal that the global conformation of wild-type alpha-sarcin is preserved in the H50Q, E96Q, H137Q, and H50/137Q variants, and that His137 is involved in an H-bond that is crucial in maintaining the active site structure and in reinforcing the stability of the enzyme. The loss of this H-bond in the H137Q and H50/137Q variants modifies the local structure of the active site. The pK(a) values of active site groups H50, E96, and H137 in the four variants have been determined by two-dimensional NMR. The catalytic dyad of E96 and H137 is not sensitive to charge replacements, since their pK(a) values vary less than +/-0.3 pH unit with respect to those of the wild type. On the contrary, the pK(a) of His50 undergoes drastic changes when compared to its value in the intact protein. These amount to an increase of 0.5 pH unit or a decrease of 1.1 pH units depending on whether a positive or negative charge is substituted at the active site. The main determinants of the pK(a) values of most of the charged groups in alpha-sarcin have been established by considering the NMR results in conjunction with those derived from theoretical pK(a) calculations. With regard to the active site residues, the H50 pK(a) is chiefly influenced by electrostatic interactions with E96 and H137, whereas the effect of the low dielectric constant and the interaction with R121 appear to be the main determinants of the altered pK(a) value of E96 and H137. Charge-charge interactions and an increased level of burial perturb the pK(a) values of the active site residues of alpha-sarcin, which can account for its reduced ribonucleolytic activity and its high specificity.  相似文献   

19.
The pH dependence of the kinetic parameters of the L-aspartase-catalyzed reaction have been examined in both the amination and the deamination directions. The enzyme isolated from Escherichia coli exists in a pH-dependent equilibrium between a higher pH form that has an absolute requirement for a divalent metal ion and for substrate activation, and a low pH form that does not require activation by either substrate or metal ions. The interconversion between these enzyme forms is observed near neutral pH in the profiles examined for the reaction in either direction. This pH-dependent activation has not been observed for other bacterial aspartases. Loss of activity is observed at high pH with a pK value of 9. The pH profiles of competitive inhibitors such as 3-nitropropionic acid and succinic acid have shown that the enzyme group responsible for this activity loss must be protonated for substrate binding at the active site. An enzymatic group has also been identified that must be protonated in the amination reaction, with a pK value near 6.5, and deprotonated in the deamination reaction. This group, tentatively assigned as a histidyl residue, fulfills the criteria for the acid-base catalyst at the active site of L-aspartase.  相似文献   

20.
A kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase within the pH range of 3.7-9.0 has been carried out. It was shown that the reaction of o-dianisidine peroxidase oxidation obeys the Michaelis--Menten kinetics; the kcat and Km values within the pH range used were determined. The optimum of peroxidase catalytic activity during o-dianisidine oxidation was observed at pH 5.0-6.0. The kinetic pattern of the reaction is discussed. It was demonstrated that deprotonation of the group at pK 6.5 decreases the kcat value 60 times. At pH greater than 8.0 an additional ionogenic group controls the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号