首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— In order to investigate synthesis and phosphorylation of the various fractions of nuclear proteins. [3H]leucine and [32P] phosphate incorporation were studied with tissue slices in vitro. Cerebral cortex and cerebellum were used to delineate the similarity and dissimilarity within CNS, and liver was taken to compare the extraneural organ. There were significant differences in [3H]leucine incorporation into nuclear proteins among those tissue sources examined, while [32P]phosphate incorporation showed very similar results among them. Although the acidic chromatin protein demonstrated high activity in each tissue source for both synthesis and phosphorylation, 0.14M-NaCl soluble protein showed the activity as high as or even higher than the acidic chromatin protein. Both [3H]leucine incorporation and [32P]phosphate incorporation were relatively low in histone. When the acidic chromatin protein was further fractionated with SDS-acrylamide gel electrophoresis, significant difference was found between CNS tissue and liver for synthesis and phosphorylation. However, considerable difference was also observed even between cerebral cortex and cerebellum. The present investigation demonstrated complicity and diversity of nuclear chromatin proteins in different organs, not only for their protein constituents but also for their synthesis and phosphorylation.  相似文献   

2.
Abstract Six putative GTP binding proteins were detected by ultraviolet light in the presence of [α-32P]GTP during the developmental cycle of Streptomyces coelicolor . Four out of six were true GTP binding proteins. Immunological reactions carried out with antiserum which recognizes the α-common subunit of G regulatory proteins identified two bands of 67 kDa and 30 kDa. Studies with [γ-32P]GTP showed significant changes in protein phosphorylation during the cell cycle. The results show that at least three different systems of GTP protein interaction are present in S. coelicolor .  相似文献   

3.
Abstract: Primary neuronal cultures from 8-day-old rat cerebellum were incubated in the presence of exogenously added 16 n M [γ-32P]ATP. Phosphorylation of a 45-kDa endogenous protein was detected within 1 min and increased linearly for ∼20 min. Unlike what was seen with [γ-32P]ATP, in the presence of [32P] orthophosphate no visible phosphorylation of protein was detected after 10 min, but a different pattern of phosphorylation was obtained in 30 min. The phosphorylation of the 45-kDa protein was reduced by 80–90% in the presence of 1 µ M unlabeled ATP, 5 U/ml of apyrase, or 0.01% trypsin but not 1 m M PO43−. Phosphorylation was inversely proportional to cell density and was unaffected by addition to the cells of 56 m M KCl or 100 µ M glutamate for 3 min. The presence of exogenously added cellular protein extracts or pretreatment of the cells for up to 20 min in phosphorylation buffer also did not affect the observed phosphorylation of the 45-kDa protein. The phosphorylation was found to be insensitive to MgCl2 but inhibited in the presence of MnCl2 or NaF and in the absence of CaCl2. Analogues of ATP suppressed phosphorylation of the 45-kDa protein by 80–90%. A similar inhibition was obtained in the presence of ADP or AMP. In this study, we establish via several different means that the phosphorylation of the 45-kDa protein in primary neuronal granule cultures occurs extracellularly through an ectokinase activity, which is furthermore distinguishable from a series of other presently characterized ecto-protein enzymes and intracellular kinases.  相似文献   

4.
Abstract: The cellular localization of two Ca2+-dependent protein phosphorylation systems was investigated using the kainic acid lesioning technique for the selective destruction of neurons. In one of these systems, a crude synaptosomal (P2) fraction was preincubated with 32Pj for 30 min; the phosphorylation of several proteins was increased during a short subsequent incubation with veratridine plus Ca2+. In the second system, crude synaptosomal membranes isolated from the P2 fraction were incubated with [γ-32P]ATP; in this system, the phosphorylation of several proteins was increased in the presence of a "calcium-dependent regulator" plus Ca2+. Kainic acid lesioning greatly reduced the amount of Ca-+-dependent protein phosphorylation in both systems. The results indicate a predominantly neuronal localization for both Ca2+-dependent protein phosphorylation systems.  相似文献   

5.
Abstract: The effects of a single oral dose of 750 mg/kg tri- o -cresyl phosphate (TOCP) on the endogenous phosphorylation of specific brain proteins were assessed in male adult chickens following the development of delayed neurotoxicity. Phosphorylation of crude synaptosomal (P2) membrane and synaptosomal cytosolic proteins was assayed in vitro by using [γ-32P]ATP as phosphate donor. Following resolution of brain proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis, specific protein phosphorylation was detected by autoradiography and quantified by microdensitometry. TOCP administration enhanced the phosphorylation of both cytosolic (Mr 65,000 and 55,000) and membrane (20,000) proteins by as much as 146% and 200%, respectively.  相似文献   

6.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

7.
ABSTRACT A protein kinase (PK) was partially purified from NaCl extracts of the cell surface complex of Euglena using DEAE-cellulose chromatography. Tubulins extracted either from flagella or from the cell surface complexes of Euglena were readily phosphorylated when incubated with [γ-32P]-ATP and the PK. Protein kinase activity was augmented with 5 mM Mn2+ or Mg2 and was inhibited or had greatly reduced activity with 5 mM Ca2+, Co2-, Cu2+ or Zn2+. Incorporation was much lower when [γ-32P]-GTP was the phosphate donor. Serine and threonine were the major radiolabeled phosphoamino acids in tubulins; label was also found in phosphotyrosine. Alpha-tubulin solubilized from flagella was a relatively poor substrate for the PK, but a Euglena α-tubulin cDNA overexpressed as a Trx-fusion protein incorporated [γ-32P]-ATP into serine and threonine when incubated with cell surface extracts. Alpha- and β-tubulins from cell surface complexes were equally good substrates for the PK. No incorporation was observed in intact microtubules either from the cell surface complex or from isolated flagella. In-gel assays identified a polypeptide of about 30 kDa that phosphorylated tubulins in extracts of both flagella and the cell surface complexes, and dephosphorylated casein was a competitive substrate for the partially purified kinase. In vivo incubation with [32P]-orthophosphate produced numerous radiolabeled bands in acrylamide gels of NaCl extracts of the cell surface complex, but none of these bands could be positively related to tubulins extracted from surface complex microtubules.  相似文献   

8.
Abstract Plasma membrane vesicles from Saccharomyces cerevisiae were incubated with [γ-32P]ATP. Several phosphorylated protein bands were separated by LiDS polyacrylamide gel electrophoresis. One of these bands with an apparent M r of 145 000 was identified by immunoprecipitation as a membrane-bound phospholipase.  相似文献   

9.
ATP-induced Secretion in PC12 Cells and Photoaffinity Labeling of Receptors   总被引:2,自引:1,他引:1  
Abstract— Secretion of catecholamines by rat PC12 cells is strongly stimulated by extracellular ATP via a P2-type pur-inergic receptor. ATP-induced norepinephrine release was inhibited 80% when extracellular Ca2+ was absent. Only four nucleotides, ATP, ATPγS, benzoylbenzoyl ATP (BzATP), and 2-methylthio-ATP, gave substantial stimulation of norepinephrine release from PC12 cells. ATP-induced secretion was inhibited by Mg2+, and this inhibition was overcome by the addition of excess ATP suggesting that ATP4-was the active ligand. ATP-induced secretion of catecholamine release was enhanced by treatment of cells with pertussis toxin or 12- O -tetradecanoylphorbol 13-acetate. The stimulatory effects of 12- O -tetradecanoyl-phorbol 13-acetate and pertussis toxin on norepinephrine release were additive. After brief exposure of intact cells to the photoaffinity analog, [α-32P]BzATP, two major proteins of 44 and 50 kDa and a minor protein of 97 kDa were labeled. An excess of ATP-γS and BzATP but not GTP blocked labeling of the proteins by [32P]BzATP. Labeling of the 50-kDa protein was more sensitive to competition by 2-methylthio-ATP than the other labeled proteins, suggesting that the 50-kDa protein represents the P2 receptor responsible for ATP-stimulated secretion in these cells.  相似文献   

10.
Abstract By cross-linking with [α-32P]GTP or [γ-32P]GTP with or without UV treatment, several proteins of Streptomyces griseus were shown to interact with GTP in specific ways. After gel electrophoresis, 19 bands of radioactivity were found; 12 bands were assigned as GTP-binding proteins and 6 bands as phosphorylated proteins. One band was assumed to be a guanylylated protein. The profile of radioactive bands was similar between cells prepared from liquid or solid culture, but markedly different between growth phases. A mutant (strain M-1) defective in aerial mycelium formation, which was originally found as a decoyinine-resistant isolate, was found to have a different profile of phosphorylated proteins.  相似文献   

11.
Abstract: Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21–26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21–26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21–26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21–26-kDa family was identified as GTP-binding proteins by [α-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [α-32P]GTP. When synaptosomes were screened for putative methyltransferases by S -adenosyl-L-[ methyl -3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.  相似文献   

12.
Abstract: Calcium ion alone or in the presence of added calmodulin stimulated in vitro transfer of 32P from [γ32P]ATP into several proteins of mitochondrial and synaptosomal particulate fractions from rat brain. Strontium ion was capable of substituting for calcium ion in this stimulation, but barium ion lacked this capacity. These results bring into question the hypothesis that calciumdependent protein phosphorylation of synaptic proteins is intrinsic to neurotransmitter release during neurotransmission, but they do not rule out that possibility.  相似文献   

13.
A method is described for cell-free studies of lipid release from isolated chloroplast envelope. The isolated membrane fraction incorporated radiolabeled galactose into galactolipids, predominantly monogalactosyldiacylglycerol, prior to immobilization of the membrane vesicles onto strips of nitrocellulose. The strips with immobilized membrane were individually incubated with various co-factors and the incubations were terminated by removing the strips. Radioactivity was determined for the strips with immobilized membrane as well as for the material released during the assay. The release of galactolipids from immobilized chloroplast envelope was time- and temperature dependent, required stroma protein(s) and was further stimulated by hydrolysable ATP, GTP and ≤50 μ M acyl-CoAs, of which 16:1-CoA was the most stimulative. To investigate whether guanine nucleotide-binding proteins could be involved, stroma and envelope were independently or together incubated with [ α -32P]GTP or [ Γ -32P]GTP. Stroma and envelope proteins were phosphorylated and the envelope fraction contained GMP/GDP binding proteins as well. When the fractions were co-incubated, the patterns of protein phosphorylation and guanine nucleotide binding was different compared to the additive effects of the separate fractions, suggesting that guanine nucleotides may have roles in galactolipid release in addition to providing energy. The results point to several similarities between the regulation of galactolipid release from isolated chloroplast envelope and the regulation of vesicular trafficking among animal and yeast cytosolic membranes, although other mechanisms for lipid release cannot, at this stage, be ruled out.  相似文献   

14.
Abstract: We studied the effect of treating rats with lithium salts on the content and in vitro phosphorylation rate of the astrocyte cell marker, glial fibrillary acidic protein (GFAP), in brain slices. Rats were fed a diet incorporating lithium chloride until the concentration of Li+ in serum reached 0.6–1.2 m M , a range similar to that achieved in clinical practice. Hippocampal tissue was analyzed for immunoreactive GFAP by a dot assay, and slices of hippocampus and caudate nucleus were labeled with [32P]-phosphate to determine the in vitro rate of phosphorylation of GFAP. Compared with controls, the level of immunoreactive GFAP in the hippocampus from lithium-treated rats was increased 34%, and GFAP in hippocampal slices incorporated 39% more 32P. This effect of lithium was apparently not confined to the hippocampus because the in vitro rate of phosphorylation of GFAP in caudate slices was also increased in the treated rats.  相似文献   

15.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

16.
Inositol glycerolipids make up less than 10% of total phospholipids of Paramecium tetraurelia cells. Unlike inositol lipids found in mammalian and other cell types, these lipids from Paramecium lack arachidonic acid. It was demonstrated that kinase and possibly phosphatase enzymes that interconvert phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P) and phosphati-dylinositol-bis-phosphate (PI-P2) exist in ciliary membranes of this ciliate. When exogenous soybean PI and [γ-32P]ATP were provided as substrates, isolated cilia preparations exhibited PI and PI-P kinase activities as demonstrated by the incorporation of radiolabel into PI-P and PI-P2. Kinase activity was activated by millimolar [Mg2+] and inhibited by millimolar [Ca2+]. Significant inhibition of kinase activity in the presence of unlabeled excess ATP suggested that ATP is the preferred phosphate donor for this reaction. Of 4 suborganellar fractions of isolated cilia, the membrane fraction had the greatest kinase activity indicating that the enzyme(s) is membrane-associated  相似文献   

17.
Abstract: Neurofilament polypeptides phosphorylated in vitro by incubation of neurofilament-enriched preparations from rat CNS with [γ-32P]ATP were compared with the corresponding polypeptides labeled in vivo by injection of 32Pi into the lateral ventricles of rats. Autoradiography of sodium dodecyl sulfate (SDS)-polyacrylamide gels revealed that the major phosphorylated species in both preparations were the three neurofilament subunits, which have molecular weights of 200K, 145K, and 68K. However, the relative levels of 32P detected in the three in vitro -labeled subunits differed from the relative in vivo levels. The two larger neurofilament polypeptides displayed similar 32P isoprotein distribution patterns on two-dimensional gels, whereas additional isoproteins were seen in the in vitro -labeled 68K species. Limited proteolysis in SDS-polyacrylamide gels revealed the presence of common phosphopeptides in the corresponding pairs of in vitro- and in vivo-labeled subunits, but the in vivo -labeled 145K and in vitro -labeled 200K polypeptides contained additional digestion products. Two-dimensional peptide mapping of the 68K polypeptide digested with a mixture of trypsin and chymotrypsin indicated that this component was phosphorylated at a single, identical site, both in vivo and in vitro. These results indicate that the protein kinase that copurifies with neurofilament preparations may be involved in their in vivo phosphorylation.  相似文献   

18.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

19.
Abstract: Hippocampal slices were incubated in the presence of [32P]Pi, and protein phosphorylation was examined by means of sodium dodecyl sulfate-gel electrophoresis. Incubation for at least 30 min with 300 μCi of [32P)Pi/brain slice gave rise to the phosphorylation of 8–10 protein bands. Most of these bands showed enhanced phosphorylation in response to noradrenaline. The basal phosphorylation of kainic acid-pretreated hippocampal slices was enhanced two- to threefold compared with controls. There was also an additional increase in kainic acid-pretreated slices in the response to noradrenaline. 8-Br-Cyclic AMP and phosphodiesterase inhibitors, such as papaverine or isobutylmethyl-xanthine, had no effect on the phosphorylation patterns.  相似文献   

20.
Abstract: The nonselective benzodiazepine (BZ) agonist diazepam is a potent inhibitor of adenylyl cyclase (AC) activity in the rat striatum. To examine this inhibitory action of diazepam further, its effects were examined in 6-hydroxydopamine-lesioned animals, which reportedly exhibit sensitization of the striatal AC pathway. As previously observed, inhibition of AC activity by diazepam was biphasic, with the first phase being receptor-mediated, whereas the second phase involves a direct action on the enzyme itself. In the presence of NaCl (120 m M ), a marked sensitization to the receptor-mediated inhibitory effect of diazepam on AC activity was observed in striatal membranes of lesioned animals. EC50 values were 10.4 ± 1.1 and 4.8 ± 0.9 n M ( p < 0.05) for intact and lesioned striata, respectively. An examination of [3H]diazepam binding revealed a significant increase in the density of binding sites in denervated striata, with no change in affinity. A time-dependent increase in [α-32P]GTP labeling of two distinct striatal proteins with apparent molecular masses of 40 and 45 kDa, suggestive of the α subunits of Gi and Gs, respectively, was observed. There was a significant increase in basal [α-32P]GTP binding to both proteins in lesioned striata. In addition, diazepam stimulated [α-32P]GTP binding to the 40-kDa protein, especially in lesioned striata. These data indicate that the sensitization of the receptor-mediated inhibitory effect of diazepam on AC activity in denervated striata may involve up-regulation of BZ receptors as well as enhanced functional coupling of these receptors to inhibitory G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号