首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtained a polyclonal antibody against the WGA-binding protein (WGAbp) of Strongylocentrotus intermedius sperm, which is a membrane glycoprotein of 260 kD under non-reducing condition. Anti-WGAbp antibody induced increases in both intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), resulting in the onset of the AR. The increases in [Ca2+]i and pHi required extracellular Ca2+ and Na+, respectively, and were suppressed by the pretreatment with WGA, resulting in the inhibition of the AR. Anti-WGAbp antibody-induced AR was inhibited also by lowered extracellular pH. elevated K+, removal of Na+ from seawater and the treatment with verapamil, a Ca2+ channel inhibitor. These inhibitory conditions are identical with those of the egg jelly-induced AR. Monovalent Fab fragments from anti-WGAbp antibody also induced the AR at relatively high concentration. These results suggest that the WGAbp on the sperm plasma membrane is involved in the regulation of Ca2+ influx and Na+/H+ exchange associated with the AR of S. intermedius sperm. It is a strong candidate for the receptor of the AR-inducing substance in the egg jelly.  相似文献   

2.
When sperm of the sea urchin, Hemicentrotus pulcherrimus , were exposed to high pH (9.0) sea water, they showed large increases in intracellular Ca2+ ([Ca2+]i) and pH (pHi) and underwent the acrosome reaction (AR) without the aid of the egg jelly. Not only [Ca2+]i increase but also pHi rise did not occur under Ca2+-free conditions. Both the increases in [Ca2+]i and pHi and the AR by high pH were inhibited by a Ca2+ channel blockers, verapamil and nisoldipine, and by a lectin, wheat germ agglutinin (WGA) which interacts with a 220 kD membrane glycoprotein of sperm. These reagents inhibited also the AR by the egg jelly. The inhibitory effects of WGA were immediately canceled by the addition of N-acetyl-D-glucosamine, a sugar which is known to remove WGA from its binding site. These results suggest that 1) the same Ca2+ transport system is activated by high external pH and the egg jelly, 2) increase in [Ca2+]i is prerequisite for the stimulation of the H+-efflux system(s) and 3) the 220 kD WGA-binding membrane protein functions as a regulator protein of Ca2+ transport system.  相似文献   

3.
Induction of the Acrosome Reaction in Starfish   总被引:7,自引:6,他引:1  
In the starfish, Asterias amurensis , at least two distinct components of the egg jelly are required for inducing the acrosome reaction: a sulfated glycoprotein named acrosome reaction-inducing substance (ARIS) and a diffusible organic substance(s) named Co-ARIS. The following evidence suggested that ARIS and Co-ARIS cooperatively activate CA-channels of the sperm plasma membrane and eventually induce dramatic changes in sperm morphology, the acrosome reaction. 1) Pronase digest of ARIS (P-ARIS) and Co-ARIS, either as a pure or a crude preparation (Fraction M8), were fully effective in combination for induction of the acrosome reaction in normal sea water, although they were not effective individually. P- ARIS alone induced the acrosome reaction fully in high Ca2+ sea water and markedly at high pHs, whereas Fraction M8 alone did not induce the reaction even in these conditions. The reaction was not induced by increase in either the Ca2+ concentration or the pH of sea water, but was markedly induced in the absence of jelly components by raising both the pH and Ca2+ concentration together. 2) The ionophore A23187 induced the acrosome reaction appreciably when present alone and fully in the presence of monensin or Fraction M8. Monesin alone was ineffective. 3) The jelly or a combination of ARIS and Fraction M8 caused abrupt Ca2+ -uptake by the sperm. The Ca-channel blockers verapamil and diltiazem inhibited the jelly-induced acrosome reaction.  相似文献   

4.
Previous studies indicated that two components of the egg jelly are required for induction of the acrosome reaction in starfish: a sulfated glycoprotein called acrosome reaction-inducing substance (ARIS) and a diffusible organic substance(s) called Co-ARIS. In the present study the sites of action of ARIS and Co-ARIS and their temporal relationships were examined. When sperm had been treated for a few minutes with ARIS, or a crude preparation of Co-ARIS (Fraction M8), or inadequate amounts of jelly, or sufficient jelly in low Ca2+ sea water, they did not undergo the acrosome reaction when the deficiencies were corrected. Moreover, they became nonresponsive to the jelly. Pronase digest of ARIS (P-ARIS) but not of Fraction M8 retained this capacity. A steroidal saponin purified as Co-ARIS did not have this capacity. This suggests the presence of a third jelly component, probably an oligopeptide(s), participating in induction of the acrosome reaction. Activation of Ca2+ -uptake seems to be at least one, if not the only, action site of ARIS and Co-ARIS, because ARIS, P-ARIS, and Fraction M8 inhibited jelly-induced Ca2+ -uptake by sperm, and because the calcium ionophore A23187 by-passed the blockage by these components of the jelly-induced acrosome reaction.  相似文献   

5.
We examined whether phospholipase A2 (PLA2) is involved in the initiation of the acrosome reaction of sperm of the sea urchin, Strongylocentrotus intermedius , using inhibitors and an activator of this enzyme. Quinacrine and p-bromophenacyl bromide (PBPB) inhibited the egg jelly-induced acrosome reaction at 100 μM, but not the ionomycin-induced one. Depression of egg jelly-induced increase of intracellular free Ca2+concentration ([Ca2+]i) by these reagents was expected and examined using fura 2. Quinacrine interfered with the flourescence of fura 2, but PBPB was found to depress at concentrations which could inhibit the acrosome reaction. Furthermore, melittin, which is known to stimulate PLA2, caused a [Ca2+]i increase and a formation of acrosomal process-like structure on sperm head. These results suggest that PLA2 participates in the early step(s) of the acrosome reaction of sea urchin sperm.  相似文献   

6.
In contrast with the case in sea urchin sperm, in starfish the acrosome reaction is not spontaneously induced by simply increasing the extracellular Ca2+ concentration or pH. At higher pHs, starfish sperm undergo morphological changes accompanied by exocytosis of the acrosomal vacuole, but they do not form acrosomal filaments. Nomarski-microscopic observation confirmed that spermatozoa undergo the acrosome reaction within the jelly coat. Acrosome reaction-inducing substance, a glycoprotein from the egg jelly, required a diffusible cofactor(s) present in the egg jelly for full activity. Several lines of evidence showed that this diffusible factor(s) is not merely Ca2+.  相似文献   

7.
Egg jelly induces the degradation of histones as well as the acrosome reaction in the spermatozoa of Asterina pectinifera . Much similar degradation of histones without any apparent morphological changes such as the acrosome reaction was induced in the spermatozoa by merely dispersing them into Na+-free seawater. It required external Ca2+ much less than the jelly-induced one in normal seawater, and was not susceptible to Ca2+-channel antagonists, verapamil and diltiazem. Once spermatozoa were incubated with egg jelly in Ca2+-free seawater, they did not undergo the histone degradation even after subsequent addition of Ca2+, but Na+-free seawater rescued such blockage. Spontaneous acrosome reaction occurred in seawater containing 10–30 mM Na+ in a Ca2+-dependent manner. This reaction was accompanied by a rapid increase in intracellular pH (pHi) followed by a large pHi decrease. Diltiazem blocked a large decrease in pHi but scarcely inhibited the acrosome reaction induced by low-Na+ seawater. Increasing K+ inhibited both pHi changes and the acrosome reaction induced by low-Na+ seawater. Decreasing pH of seawater also inhibited the pHi changes but did not affect the acrosome reaction. Strontium was also effective to induce a rapid increase, followed by a gradual decrease, in pHi and the acrosome reaction.  相似文献   

8.
Intracellular pH Changes of Starfish Sperm Upon the Acrosome Reaction   总被引:4,自引:4,他引:0  
The acrosome reaction is accompanied by ionic changes such as increases in intracellular Ca2+ and intracellular pH (pHi). Since the two jelly components essential for inducing the acrosome reaction, ARIS and Co-ARIS, were shown to activate Ca-channels (accompanying paper), we examined the jelly components to determine which was responsible for the pHi-increase using 9-aminoacridine as a probe of pHi. This paper presents evidence that an oligopeptide(s) is responsible for the pHi-increase. The pHi of swimming sperm is 7.4-7.5. Within 20 sec after the addition of jelly, their pHi increased rapidly by 0.06 pH unit, then decreased by 0.2–0.3 pH unit, and reached a plateau level within 3 min. Similar changes in pHi were observed on addition of a Pronase digest of ARIS (P-ARIS) and a diffusible fraction of jelly (Fraction M8) together. Fraction M8, but not ARIS or Co-ARIS increased the pHi, and activated sperm respiration in sea water at pH 6.5. The two activities of Fraction M8 depended upon Na+ but not Ca2+, and were susceptible to Pronase digestion. Fraction M8 is also known to enhance induction of the acrosome reaction by the Ca-ionophore A23187. These results suggest that the egg jelly contains a peptide(s) that is not obligatory for the acrosome reaction but facilitates the reaction by increasing the pHi of the sperm. The significance of the pHi-increase upon the acrosome reaction is discussed.  相似文献   

9.
The Acrosome Reaction Induced by Dimethylsulfoxide in Sea Urchin Sperm   总被引:1,自引:1,他引:0  
The acrosome reaction in sea urchin sperm, as judged by disappearance of the acrosomal vesicles in Nomarski optics, was induced by dimethylsulfoxide (DMSO) at concentration above 0.1% in normal artificial sea water. The number of the acrosome-reacted spermatozoa increased in proportion to DMSO concentration. The DMSO-induced acrosome reaction, as well as the jelly water- or A23187-induced one, was inhibited by nifedipine and hardly occurred in Ca2+-free artificial sea water. However, the DMSO-induced acrosome reaction was found in a few number of spermatozoa in the presence of Ca2+at above 0.5 mM, though the jelly water- or A23187-induced acrosome reaction did not occur at external Ca2+levels lower than 1 mM. Dependency of the acrosome reaction by DMSO on external Ca2+is somewhat lower than that of the reaction by jelly water. In Ca2+-free artificial sea water, the acrosomal regions of DMSO-treated spermatozoa attached to their own tails. In some cases, spermatozoa thus treated with DMSO in Ca2+free artificial sea water caused formation of fertilization membrane in a few number of eggs kept in Ca2+-free artificial sea water. Even in the absence of extermal Ca2+, preliminary step of the acrosome reaction seems to be completed probably by DMSO-induced weak Ca2+-mobilization in spermatozoa.  相似文献   

10.
When spermatozoa of Asterina pectinifera are treated with a solution of homologous egg jelly, besides undergoing the acrosome reaction, they begin to degrade their histones gradually. The degradation is most prominent with histone H1, almost 75% of which is degraded within one hour at 20°C. The jelly-induced histone degradation, like the acrosome reaction, requires external Ca2+, prefers high pHs and is susceptible to Ca2+-channel antagonists such as verapamil and diltiazem. Histone degradation is also induced by nigericin as well as monensin in normal seawater, but not in Ca2+-free seawater. Calcium ionophore A23187, that greatly facilitates the monensin-induced histone degradation, also induces histone degradation by itself, slightly in normal seawater and markedly in Ca2+-enriched seawater. Concanavalin A inhibits the jelly-induced histone degradation but not the jelly-induced acrosome reaction. These results suggest that egg jelly induces the histone degradation by enhancing Ca2+-influx via a Ca2+-channel(s) and by increasing cytoplasmic pH, through a pathway which is closely related to, but not entirely the same as, the one leading to the acrosome reaction.  相似文献   

11.
Anion Channel Blockers Inhibit the Acrosome Reaction of Echinoderm Sperm   总被引:1,自引:1,他引:0  
Two types of anion channel blockers, SITS (4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid) and DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid), inhibited jelly-induced acrosorne reaction in starfish and sea urchin. In starfish sperm, both of the blockers reversibly inhibited the formation of acrosomal process but they had no effect on either the acrosomal exocytosis or acid release from the sperm. Complete acrosome reaction occurred even in Cl- and SO42−-free artificial seawater whereas HCO3was required for the acrosomal exocytosis. Importance of anion transport in acrosome reaction is discussed.  相似文献   

12.
Acrosome reaction (AR) and histone degradation (HD) of Asterina pectinifera sperm are induced by co-operation of ARIS and a diffusible fraction (M8) of egg jelly. Once sperm are treated with ARIS or M8 separately for several minutes, they do not undergo the AR in response to the egg jelly. Preincubation of sperm with M8 at 0 degrees C is not effective to block the jelly-induced AR whereas inhibitory effects of ARIS remain at 0 degrees C. Jelly-induced HD is inhibited by pretreatment of sperm with ARIS but is not affected by the incubation with M8. The blockage of the jelly-induced reactions, both AR and HD, by ARIS- or M8-pretreatment can be bypassed by ionophores, A23187 and monensin.  相似文献   

13.
The sea urchin egg jelly coat (EJ) induces the acrosome reaction (AR) of sperm. We previously demonstrated that a fraction of EJ containing two glycoproteins of 82- and 138-kDa possess the AR inducing activity (8). Here we show that Peptide-N-Glycosidase-F treatment of EJ followed by precipitation and washing in 70% ethanol results in a substantial loss of AR inducing activity in the ethanol insoluble material. When a PNGase-F digest of EJ is chromatographed on a Sepacryl-200 gel filtration column, an AR inducing fraction elutes within the partitioning volume. Acrosome reaction inducing activity of undigested EJ does not elute within the partitioning volume. The chromatographed AR inducing fraction of the PNGase-F digest reacts strongly in the phenol-sulfuric assay demonstrating carbohydrate is present; silver stained gels do not detect the presence of protein. Harsh alkaline hydrolysis of EJ in an excess of NaBH4, preserves a substantial amount of AR inducing activity. These data show that N-linked oligosaccharides released from EJ by PNGase-F digestion are capable of inducing the sperm acrosome reaction.  相似文献   

14.
A fucose-rich glycoconjugate (FRG) was isolated from egg jelly of the sea urchin Hemicentrotus pulcherrimus by gel filtration. FRG induced the acrosome reaction in H. pulcherrimus spermatozoa in a concentration-dependent manner, although it showed about half the activity of the original unfractionated jelly. Synthetic sperm-activating peptide I (SAP-I: Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) increased the rate of the acrosome reaction induced by FRG; the maximal rate of the acrosome reaction with FRG and SAP-I being that of the unfractionated jelly. The half-maximal increase in induction of the acrosome reaction by SAP-I with FRG occurred at 4 × 10−10 M SAP-I, which was almost the same concentration inducing half-maximal stimulation of sperm respiration. Pronase digestion of FRG resulted in an 50% decrease in induction of the acrosome reaction and also in the elevation of cAMP in sperm. Some reagents (monensin and 3-isobutyl-1-methylxanthine) which increase intracellular pH, Ca2+ and cyclic nucleotides also increased the rates of the acrosome reaction induced by FRG or pronase-digested FRG. However, the rates did not reach those with FRG or pronase-digested FRG with SAP-I. These results indicate that SAP-I promotes induction of the acrosome reaction by acting as a specific co-factor of FRG.  相似文献   

15.
Wheat germ agglutinin (WGA) binds to the entire surface of Strongylocentrotus purpuratus sperm, and inhibits the egg jelly-induced acrosome reaction. The binding was found to be species dependent and was completely inhibited by 5 mM N-acetyl-D-glucosamine. Blockage of the acrosome reaction by WGA was bypassed by a combination of the ionophores A23187 and monensin, although neither ionophore was effective individually. These experiments suggest that WGA blocks both Ca2+ uptake and Na+/H+ exchange in these sperm, which was confirmed by direct measurements of 45Ca2+ uptake and H+ efflux. The target of WGA in S. purpuratus sperm appears to be a membrane glycoprotein of Mr = 210,000. Treatment of this protein with neuraminidase or endo-beta-N-acetylglucosaminidase F abolished WGA binding.  相似文献   

16.
A monoclonal antibody, J18/29, induces the acrosome reaction (AR) in spermatozoa of the sea urchin Strongylocentrotus purpuratus. J18/29 induces increases in both intracellular Ca2+ and intracellular pH similar to those occurring upon induction of the AR by the natural inducer, the fucose sulfate-rich glycoconjugate of egg jelly. Lowering the Ca2+ concentration or the pH of the seawater inhibits the J18/29-induced AR, as does treatment with Co2+, an inhibitor of Ca2+ channels. The J18/29-induced AR is also inhibited by verapamil, tetraethylammonium chloride, and elevated K+. All these treatments cause similar inhibition of the egg jelly-induced AR. J18/29 reacts with a group of membrane proteins ranging in molecular mass from 340 to 25 kD, as shown by immunoprecipitation of lysates of 125I-labeled sperm and Western blots. The most prominent reacting proteins are of molecular masses of 320, 240, 170, and 58 kD. The basis of the multiple reactivity appears to reside in the polypeptide chains of these proteins, as J18/29 binding is sensitive to protease digestion but resistant to periodate oxidation. There are approximately 570,000 sites per cell for J18/29 binding. J18/29 is the only reagent of known binding specificity that induces the AR; it identifies a subset of sperm membrane proteins whose individual characterization may lead to the isolation of the receptors involved in the triggering of the AR at fertilization.  相似文献   

17.
Although the acrosome reaction in lively motile hamster spermatozoa can occur independently of the egg or its investments ("spontaneous" acrosome reaction), it appears to be the egg investments, particularly the zona pellucida, that induces the acrosome reaction in fertilizing spermatozoa of many mammalian species. The latter is referred to as "zona-induced" acrosome reaction. Experiments were conducted to determine if the zona-induced acrosome reaction has different ion requirements from the spontaneous reaction. Like the spontaneous acrosome reaction, the zona-induced acrosome reaction required extracellular Na+, K+ and Ca2+. The absence of Cl and albumin in the medium inhibited the reaction. The zona-induced acrosome reaction could occur in a HCO3-free medium, but far less efficiently than in medium containing this ion. Proteinase inhibitors, benzamidine and TLCK, inhibited the zona-induced acrosome reaction. These results suggest that the chemical reactions involved in the spontaneous and zona-induced acrosome reactions are similar although the reaction-triggering mechanism is probably different.  相似文献   

18.
The influx of Ca2+ and its subsequent intracellular increase are required for the acrosome reaction of sea urchin sperm to occur. Spermatozoa must undergo this reaction, which is triggered by the egg jelly, in order to fertilize the egg. Here, the egg jelly-induced Ca2+ influx mechanisms have been studied in sperm loaded with FURA-2 using Mn2+ under the assumption that this divalent ion is an indicator of Ca2+ influx through Ca2+ channels. Egg jelly induced the immediate entry of Ca2+ (mixing time 1 s), however; we found that the influx of Mn2+ increased after a lag time of 5 s. Nisol-dipine (a Ca2+ channel blocker) did not block the Mn2+ influx which was inhibited by 40 mM of external [K+], low Na+, and 5 mM of tetraethylammonium (a K+ channel blocker). These conditions also inhibited the alkalinization and the acrosome reaction. The inhibition of the Mn2+ influx could be overcome by increasing internal pH (pHi) with ammonium (10 mM). On the contrary the influx of Ca2+ during the first 5 s was not inhibited by any of the conditions indicated before, except by nisoldipine. These data could be explained by the activation of two different Ca2+ channels by egg jelly. The first one being a receptor-operator Ca2+ channel that opens when the receptor for egg jelly is occupied independently of the ionic conditions. The other one could be considered as a second messenger-operated Ca2+ channel that requires at least an increase in pHi to open.  相似文献   

19.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An extract obtained from Cynops sperm induced the activation of both Cynops and Xenopus eggs with accompanying changes in the potential of the egg membrane that were quite similar to those caused by the Cynops sperm. The activation-inducing properties of the extract were abolished by treatment with proteinase K or by heating (60°C, 15 min) and were associated with a protease activity against peptidyl Arg-MCA substrates. The activation of Xenopus eggs by the extract was inhibited by those substrates, or by protease inhibitors, aprotinin or leupeptin. The protease activity was localized in the acrosomal region of Cynops sperm. The activation of Xenopus eggs by the extract was prevented when the exterior concentration of Ca2+ions, [Ca2+]0, was reduced to 1.5 μM, but it was enhanced when [Ca2+]0 was increased to 340 μM. The activation of Xenopus eggs by the extract was not affected by positive clamping when [Ca2+]0 was 340 μM. These results suggest that the sperm extract contains a protease that causes an increase in the influx of Ca2+ions that results in voltage-insensitive activation of the egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号