首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near surface thermoclines form each day in the limnetic waters of Lake Titicaca (Peru-Bolivia) and thereby retain phytoplankton under extreme irradiances. This bright light exposure results in strongly depressed chlorophyll fluorescence and photosynthesis which both decay (bright light) and recover (dim light) by first order rate kinetics. During each afternoon the phytoplankton are redistributed by wind-induced mixing, and full recovery is accomplished soon after nightfall. In vivo fluorescence was measured over this diet cycle both with (Fb) and without (Fa 3-(3,4-dichlorophenyl)-1,1-dimethyl urea. Strongest bright light effects were on the parameter (Fa– Fa), a crude measure of operational photosystem II reaction centers (RC IIs). On dates of strong thermocline development, surface (FFa– Fa) was reduced to 5% or less of that for the mixed layer maximum. Fluorescence depression was greater in the lake than in Pyrex bottles incubated at fixed depths for 4 h. Ultraviolet light intensified the photoinhibitory response, but strong (Fb– Fa) depression could be induced by photosynthetically available radiation alone. In Lake Titicaca, photoinhibition apparently operates by reversible in-activation of RC IIs. It occurs in the natural water column and is not simply an artifact affixed bottle incubations.  相似文献   

2.
It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered during the early biological night would phase delay the human circadian pacemaker. Twenty-one healthy young subjects underwent a 6.5-h light exposure session in one of three randomly assigned conditions: 1) continuous bright light of approximately 9,500 lux, 2) intermittent bright light (six 15-min bright light pulses of approximately 9,500 lux separated by 60 min of very dim light of <1 lux), and 3) continuous very dim light of <1 lux. Twenty subjects were included in the analysis. Core body temperature (CBT) and melatonin were used as phase markers of the circadian pacemaker. Phase delays of CBT and melatonin rhythms in response to intermittent bright light pulses were comparable to those measured after continuous bright light exposure, even though the total exposure to the intermittent bright light represented only 23% of the 6.5-h continuous exposure. These results demonstrate that a single sequence of intermittent bright light pulses can phase delay the human circadian pacemaker and show that intermittent pulses have a greater resetting efficacy on a per minute basis than does continuous exposure.  相似文献   

3.
The dark reduction of photooxidized bacteriochlorophyll (P+) by photoreduced secondary quinone acceptor (QB-) in isolated reaction centers (RC) from the bacterium Rhodobacter sphaeroides wild type and mutant strain SA(L223) depending on the duration of light activation of RC was studied. The kinetics of the dark reduction of P+ decreased with increasing light duration, which is probably due to conformational changes occurring under prolonged light activation in RC from the wild type bacterium. In RC from bacteria of the mutant strain in which protonatable amino acid Ser L223 near QB is substituted by Ala, the dependence of reduction kinetics of P+ on duration of light was not observed. Such dependence, however, became observable after addition of cryoprotectors, namely glycerol and dimethylsulfoxide, to the RC samples from the mutant strain. It was concluded that substitution of Ser L223 with Ala disturbs the native mechanism of electrostatic stabilization of the electron in the RC quinone acceptor site. At the same time, an additional modification of RC hydrogen bonds by glycerol and dimethylsulfoxide probably includes various possibilities for more effective time delay of the electron on QB.  相似文献   

4.
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 +A0 ? with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 +A0 ?, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.  相似文献   

5.
1. The study investigated the effect of exposure to 3-h bright light (2500 lx) or dim light (200 lx) just prior to taking a hot bath upon thermophysiological responses during the 1-h bath (at 38.5°C water temperature). 2. Core and forehead skin temperature increases during the bath were significantly lower after bright than after dim light exposure. 3. Heart rate during the bath was significantly lower after exposure to bright light than dim light. 4. These results are discussed in terms of a reduced set-point of core temperature due to a probable higher secretion of melatonin under the bright light condition.  相似文献   

6.
Living in isolation from time cues under relatively high and low light intensities for a total (on average) of 24 days, 18 subjects estimated the passage of time by “producing” short (10 to 120 seconds) and long (lh) intervals throughout the experiments. The lh productions were independent of light intensity and highly positively correlated with the duration of wake times. The short-interval productions were markedly increased under high light intensity. In a subsample of 6 subjects, the interaction between effects of body temperature and light condition on 10-second production was analyzed. Productions were negatively correlated with body temperature. In both dim and bright light, productions decreased by a factor of 0.7 per °C. In bright light, production was increased by a factor of 1.2 relative to dim light. This effect was not mediated by body temperature, which itself was on average slightly increased in bright light. Since subjective time is slowed by bright light, objective time seems to pass faster in bright light. (Chronobiology International, 14(6), 585–596, 1997)  相似文献   

7.
The effects after exposure to two different light intensities (dim, 50 lx and bright, 5000 lx) on thermoregulatory responses during exercise in a climatic chamber (27 degrees C, 60% relative humidity) were studied in nine untrained female subjects, aged 19-22 years. The subjects were in either the dim or bright light intensities from 0600 hours to 1200 hours. They were then instructed to exercise on a cycle ergometer at an intensity of 60% maximal oxygen uptake from 1200 hours to 1300 hours in a light intensity of 500 Ix. The main results can be summarized as follows. Firstly, exercise-induced increases of core temperature were significantly smaller, after exposure to the bright than after the dim light intensities, although both tests were performed in the same light intensity. Secondly, body mass loss after exercise was significantly greater after exposure to the bright light intensity. Thirdly, an increase in salivary lactic acid during exercise was significantly lower after the bright intensity. Fourthly although the salivary melatonin level was not different between the two light intensities both before and after the exercise, it increased significantly during exercise only after the bright intensity. These results are discussed in terms of the establishment of a lower set-point in the core temperature after exposure to a bright light intensity.  相似文献   

8.
Early light experience influences the brain during development. Perinatal light exposure has an important effect on the development of the circadian system, although the role of quantity versus quality of light in this process is still unclear. We tested the development of the circadian rhythm of locomotor activity under constant bright light from the day of weaning, of six groups of rats raised under different light conditions during suckling. Results indicated that when rats received daily darkness during suckling (rats reared under constant darkness or light-dark cycles with dim or bright light) became arrhythmic when exposed to continuous bright light after weaning. However, those rats reared in the absence of darkness (constant dim or bright light, or alternating dim and bright light) developed a circadian rhythm, which was stronger and had a shorter period depending on the quantity of light received during suckling. Vasointestinal polypeptide immunoreactivity in the suprachiasmatic nucleus (SCN) was higher in those rats with weaker rhythms. However, no apparent differences among these groups were found in the melanopsin-expressing retinal ganglion cells, which provide the SCN with light input in the photoentrainment process. When bright light was shifted to dim light in three of the groups on day 57 after weaning, all of them generated a circadian rhythm with a longer period in those rats previously arrhythmic. Our results indicate the importance of the amount of light received at the early stages of life in the development of the circadian system and suggest that darkness is needed for the normal development of circadian behaviour.  相似文献   

9.
The aim of our present study was to establish if there are any changes in core temperature and plasma glucose concentration during exposure to bright (5000 lx) and dim (100 lx) light. Ten healthy women (age: 19.6 ± 1.66 years) were studied in climatic chamber in which ambient temperature and relative humidity were maintained at 26°C and 60% RH, respectively. Rectal temperature was measured every 5 min and blood samples for determination of glucose were collected every 2 h. Each participant took part in both sessions in bright light and dim light conditions on different days with an interval of at least 1 day. Our results have shown that glucose concentration increases in bright light conditions as compared to dim light conditions but it remains within the normal range values for healthy subjects. On the other hand, there is a slight but significant decrease in rectal temperature in bright light in comparison to dim light conditions. The findings showing the decreased rectal temperature with concomitant increase in glucose concentration observed in bright light conditions might be explained by the mechanism involving melatonin action as shown previously by Aizawa and Tokura (1999).  相似文献   

10.
Continuous light can be used as a tool to understand the diurnal rhythm of plants and it can also be used to increase the plant production. In the present research, we aimed to investigate the photosynthetic performance of V. radiata under continuous light as compared with the plants grown under normal light duration. Chlorophyll a fluorescence transient (OJIP test) technique was used to understand the effect on various stages of photosynthesis and their consequences under continuous light condition. Various Chl a Fluorescence kinetic parameters such as Specific energy fluxes (per QA-reducing PSII reaction center (RC)) (ABS /RC; TR0/RC; ET0/RC; DI0/RC), phenomenological fluxes, leaf model, (ABS/CSm; TR/CSm; ETo/CSm), Quantum yields and efficiencies (φPo; φEo; Ψo) and Performance index (PIabs) was extracted and analysed in our investigation. Conclusively, our study has revealed that continuous light alters the photosynthetic performance of V. radiata at a different point but also improve plant productivity.  相似文献   

11.
The aim of our present study was to establish if there are any changes in core temperature and plasma glucose concentration during exposure to bright (5000 lx) and dim (100 lx) light. Ten healthy women (age: 19.6 ± 1.66 years) were studied in climatic chamber in which ambient temperature and relative humidity were maintained at 26°C and 60% RH, respectively. Rectal temperature was measured every 5 min and blood samples for determination of glucose were collected every 2 h. Each participant took part in both sessions in bright light and dim light conditions on different days with an interval of at least 1 day. Our results have shown that glucose concentration increases in bright light conditions as compared to dim light conditions but it remains within the normal range values for healthy subjects. On the other hand, there is a slight but significant decrease in rectal temperature in bright light in comparison to dim light conditions. The findings showing the decreased rectal temperature with concomitant increase in glucose concentration observed in bright light conditions might be explained by the mechanism involving melatonin action as shown previously by Aizawa and Tokura (1999).  相似文献   

12.
We have recently reported the crystallization of the reaction center of Photosystem II in the presence of detergent mixtures [Adir N (1999) Acta Crystallogr D Biol Crystallogr D55: 891–894]. We have used high performance liquid chromatography, dynamic light scattering, native gel electrophoresis and thermoluminescence measurements to characterize the interaction between these detergent mixtures and RC II, to try and understand their role in the crystallization process. Size exclusion HPLC and dynamic light scattering confirmed that the isolated RC II used for crystallization was exclusively monomeric. Dynamic light scattering measurements show that the detergent mixtures formed single micelles within a limited range of hydrodynamic radii. Both size exclusion HPLC and dynamic light scattering were used to follow the interaction between the detergent mixtures and monomeric RC II. These techniques revealed a decrease in the detergent mixture treated RC II particle size (with respect with the untreated RC II), and that RC II from solubilized crystals contained particles of the same size. Native gel electrophoresis showed that this change in apparent size is not due to the disintegration of the internal structure of the RC II complex. Thermoluminescence measurements of solubilized RC II crystals showed charge recombination from the S2,3QA state, indicating that RC II remains functionally viable following detergent mixture treatment and crystallization. The role of the detergent mixtures in the crystallization of RC II is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
WOLEDGE  JANE 《Annals of botany》1971,35(2):311-322
Leaves of tall fescue (Festuca arundinacea Schreb.) plants grownin bright light had higher rates of apparent photosynthesisper unit leaf area in bright light, and slightly lower ratesin dim light than did those of plants grown in dim light. Darkrespiration rates were higher in plants grown in bright lightthan in plants grown in dim light and the decline of photosynthesiswith increasing leaf age was faster. The rate of apparent photosynthesis in bright light of the firstleaf to become fully expanded after plants were transferredfrom bright to dim light was lower than that of plants remainingin bright light. The decline in the rate of photosynthesis ofa leaf already fully expanded at the time of transfer was notaffected. Transferring from dim to bright light increased therate of photosynthesis of the next expanded leaf; it also increasedthe rate of an already fully expanded leaf during the firstweek in bright light. After this, photosynthesis fell at a ratesimilar to that of plants remaining in dim light.  相似文献   

14.
1. 1. The study aimed at knowing whether thermal sensation during afternoon cool exposure could be influenced by bright light (4000 lx) or dim light (200 lx) in the forenoon.
2. 2. The subjects felt cooler after exposure to dim light than to bright light.
3. 3. Melatonin in the urine was significantly higher in bright light than in dim light at 10:30 h and at noon.
  相似文献   

15.
Concentrations of five acute phase proteins: C-reactive protein (CRP), alpha 1-antichymotrypsin (ACT), transferin (Tf), alpha 2-macroglobulin (alpha 2-M) and haptoglobin (Hp) as well as glycosylation profiles of alpha 1-antichymotrypsin (ACT) were studied in sera samples with 7 healthy volunteers under the influence of two different light intensities during the daytime dim (100 lx) and bright (3000 lx) light. Concentration of transferin (negative proteins) under the influence of bright light during the daytime decreased significantly. Other proteins have the tendency to increase (positive proteins) under the influence of daytime bright light. The microheterogeneity of ACT did not change under the influence of different light intensities. Melatonin and rectal temperature were also measured simultaneously. Rectal temperature decreased to be lower during the first half of the night and urinary melatonin secretion rate increased to be higher during the night when the subjects spent time under the bright light during the day. Thus, it is concluded that the diurnal bright light exposure may activate some parameters of acute phase proteins, increase nocturnal melatonin secretion and accelerate a fall of rectal temperature during first half period of night sleep.  相似文献   

16.
Core temperature (tympanic and rectal temperatures) is lowered for several hours under diurnal bright light exposure and its evening fall is inhibited under evening bright light exposure. Melatonin may be involved in the behavior of these core temperatures. Diurnal bright light exposure for several hours may make dressing behavior and thermal sensibility in the evening cold slower and dull, compared with diurnal dim light exposure. On the contrary, evening bright light exposure for several hours may make the dressing behavior and thermal sensibility in the evening cold quicker and sharper, compared with evening dim light exposure. The underlying physiological mechanisms for these findings are that the thermoregulatory set-point would be reduced more markedly in the evening under the influence of higher elevation of melatonin under the diurnal bright light exposure, and its evening decline would be inhibited by suppression of the nocturnal rise of melatonin under evening bright light exposure.  相似文献   

17.
Beneficial effects of napping or bright light exposure on cognitive performance have been reported in participants exposed to sleep loss. Nonetheless, few studies investigated the effect of these potential countermeasures against the temporary drop in performance observed in mid-afternoon, and even less so on cognitive flexibility, a crucial component of executive functions. This study investigated the impact of either an afternoon nap or bright light exposure on post-prandial alterations in task switching performance in well-rested participants. Twenty-five healthy adults participated in two randomized experimental conditions, either wake versus nap (n=15), or bright light versus placebo (n=10). Participants were tested on a switching task three times (morning, post-lunch and late afternoon sessions). The interventions occurred prior to the post-lunch session. In the nap/wake condition, participants either stayed awake watching a 30-minute documentary or had the opportunity to take a nap for 30 minutes. In the bright light/placebo condition, participants watched a documentary under either bright blue light or dim orange light (placebo) for 30 minutes. The switch cost estimates cognitive flexibility and measures task-switching efficiency. Increased switch cost scores indicate higher difficulties to switch between tasks. In both control conditions (wake or placebo), accuracy switch-cost score increased post lunch. Both interventions (nap or bright light) elicited a decrease in accuracy switch-cost score post lunch, which was associated with diminished fatigue and decreased variability in vigilance. Additionally, there was a trend for a post-lunch benefit of bright light with a decreased latency switch-cost score. In the nap group, improvements in accuracy switch-cost score were associated with more NREM sleep stage N1. Thus, exposure to bright light during the post-lunch dip, a countermeasure easily applicable in daily life, results in similar beneficial effects as a short nap on performance in the cognitive flexibility domain with possible additional benefits on latency switch-cost scores.  相似文献   

18.
This study was designed to examine the effect of exposure to two levels of light intensity (bright; 5000 lux, dim; 50 lux) prior to supramaximal cycle exercise on performance and metabolic alterations. The exercise was performed after bright and dim light exposure for 90 minutes. Ten male long-distance runners volunteered to take part in the study. They performed 45-sec supramaximal exercise using a cycle ergometer in a 500-lux. Mean power output was measured during the exercise. Lactate and ammonia in the blood and epinephrine and norepinephrine concentrations in plasma were measured at rest immediately after bright and dim light exposures and after the exercise. Bright and dim light exposure prior to exercise did not significantly affect the power output during the exercise. Blood glucose concentration immediately after exercise and plasma epinephrine during the resting period were significantly lower after bright light exposure compared with dim light exposure (p < 0.05). No significant difference was found in blood lactate, ammonia, or plasma norepinephrine levels after exercise following bright and dim light exposures. This study demonstrated that bright light stimulation prior to supramaximal exercise decreases glucose and epinephrine levels, but is not related to physical performance.  相似文献   

19.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00–15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15–0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04–0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30–06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00–15:00) could enhance parasympathetic activity around midnight.  相似文献   

20.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00-15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15-0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04-0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30-06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00-15:00) could enhance parasympathetic activity around midnight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号