首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Thrombin stimulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelial cells (HUVEC) requires the active site of thrombin and involves rapid and transient rises in cytoplasmic free calcium [Ca2+]i. In this study, we investigated whether or not the anion-binding exosite for fibrinogen recognition of thrombin (which confers certain substrate specificities) is also necessary for the induction of rises in [Ca2+]i and PGI2 production. Thrombin variants which lack either the catalytic site (DIP-alpha-thrombin) or anion-binding exosite (gamma-thrombin) either alone or in combination failed to induce rises in [Ca2+]i or PGI2 production in HUVEC. To further study the role of the anion-binding exosite of thrombin in the activation of HUVEC, COOH-terminal fragments of hirudin were used. This portion of hirudin interacts with the anion-binding exosite of thrombin and inhibits thrombin-induced fibrinogen coagulation while leaving the catalytic activity of thrombin intact. A 21-amino acid COOH-terminal peptide of hirudin (N alpha-acetyldesulfato-hirudin45-65 or Hir45-65) inhibited thrombin-induced (0.5 U/ml) rises in [Ca2+]i and PGI2 production with IC50 of 0.13 and 0.71 microM, respectively. Similar results were obtained using shorter hirudin-derived peptides. Thus, the fibrinogen anion-binding exosite of thrombin is required for alpha-thrombin-induced rises in [Ca2+]i and PGI2 production in HUVEC.  相似文献   

2.
To characterize the endothelial cell surface membrane glycoproteins that mediate thrombin stimulation of PGI2 synthesis by human umbilical vein endothelial cells (HUVEC), HUVEC were stimulated with thrombin in the presence or absence of different lectins. Of the lectins tested, only wheat germ agglutinin (WGA) inhibited thrombin-induced rises in cytosolic free calcium [( Ca2+]i), measured using Quin 2-loaded HUVEC and PGI2 production measured by radioimmunoassay. However, WGA by itself had no influence on baseline [Ca2+]i or PGI2 production and did not inhibit histamine-induced rises in [Ca2+]i. The inhibition of thrombin-induced rises in [Ca2+]i and PGI2 production by WGA was dose dependent, with half-maximal inhibition occurring at 2 micrograms/ml. WGA also inhibited thrombin-induced release of 3H-arachidonic acid. These effects of WGA were reversed by N-acetyl-glucosamine (GlcNAc) and N-acetyl-neuraminic acid, which bind specifically to WGA, but not by unrelated sugars. Succinylated WGA (succ-WGA), a chemically modified derivative of WGA that binds to GlcNAc but, unlike native WGA, not to sialoglycoproteins, did not inhibit thrombin-induced rises in [Ca2+]i and PGI2 production. These results suggest that thrombin induces rises in [Ca2+]i and PGI2 production by interacting with an endothelial surface membrane sialoglycoprotein.  相似文献   

3.
Selenium is an essential component of glutathione peroxidase, an enzyme which protects cells against peroxidation and controls concentrations of intracellular peroxides. Since selenium deficiency is clinically associated with an increased degree of atherosclerosis, the effects of selenium deficiency on prostacyclin (PGI2) and platelet activating factor (PAF) production by cultured human umbilical vein endothelial cells (HUVEC) were investigated. In selenium-deficient HUVEC, histamine-induced PGI2 synthesis was significantly decreased when compared to selenium-supplemented HUVEC; in contrast, histamine-induced PAF production was increased by selenium deficiency. Histamine-induced inositol trisphosphate and [Ca2+]i responses and the conversion of PGG2 and PGH2 to PGI2 were not altered by selenium deficiency. However, selenium deficiency decreased the conversion of exogenous arachidonate to PGI2 and markedly suppressed glutathione peroxidase activity. These results suggest that selenium deficiency, by decreasing glutathione peroxidase activity, makes HUVEC susceptible to peroxide-induced inhibition of the cyclooxygenase activity of PGH2 synthase, resulting in decreased PGI2 production. These changes may alter platelet function in vivo and thus play a role in the increased incidence of atherosclerosis reported in selenium-deficient individuals.  相似文献   

4.
Cultured human umbilical vein endothelial cells (HUVEC) stimulated with thrombin are known to synthesize prostacyclin at least in part from arachidonate released by phospholipase A2, an enzyme directly activated by calcium. In this study, thrombin stimulation of Quin 2-loaded HUVEC caused rapid and dose-dependent rises in inositol trisphosphate (IP3) and cytosolic free calcium (Ca2+i) levels which preceded a similarly dose-dependent rise in prostacyclin production measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay (ED50 = 0.6-0.7 units/ml for all three effects). Thrombin induced these effects in the absence of extracellular calcium (EGTA) or in the presence of either 8-bromo-cAMP or the calmodulin inhibitor W7. Thrombin inactivated with either diisopropyl fluorophosphate or D-Phe-Pro-Arg-chloromethyl ketone was inactive. In contrast, Quin 2-loaded cultured bovine aortic endothelial cells failed to respond to thrombin, although stimulation with trypsin elevated IP3 and Ca2+i levels and increased 6-keto-PGF1 alpha production. Restimulation of HUVEC with thrombin or histamine 5 min after an initial stimulation with thrombin (2 units/ml for 5 min) failed to induce a second rise in either IP3 or Ca2+i levels or further production of 6-keto-PGF1 alpha, whereas restimulation with ionomycin in the presence or absence of extracellular calcium elevated Ca2+i levels and induced further 6-keto-PGF1 alpha production. However, if the initial stimulation with thrombin was terminated by addition of D-Phe-Pro-Arg-chloromethyl ketone within 10-60 s, restimulation with a second dose of thrombin induced second rises in both IP3 and Ca2+i levels and additional 6-keto-PGF1 alpha production that were greatest when the initial thrombin stimulus was briefest. These results are consistent with the conclusion that IP3 acts as a second messenger by which thrombin elevates Ca2+i levels and initiates prostacyclin synthesis in HUVEC and that in vivo endothelial cells may be stimulated multiple times to synthesize prostacyclin if each period of stimulation is brief.  相似文献   

5.
Secondary signals mediated by GPIIb/IIIa in thrombin-activated platelets   总被引:3,自引:0,他引:3  
We have previously found that stimulation of aequorin-loaded platelets by thrombin produced a two-peaked increase in intracellular free calcium concentration ([Ca2+]i), and the development of the second peak of [Ca2+]i was closely related with the aggregation. In this report, we studied the interrelationship between the GPIIb/IIIa complex, aggregation, cytoskeletons and [Ca2+]i of platelets. The pretreatment of the platelets with dihydrocytochalasin B (4 microM), an actin polymerization inhibitor, did not inhibit aggregation and TXB2 production, but did inhibit both actin polymerization and the second peak of [Ca2+]i increase induced by thrombin, suggesting that actin polymerization and the second peak of [Ca2+]i are interrelated. GRGDSP (100 microM), a synthetic anti-adhesive peptide, has already been reported to inhibit platelet aggregation and the second peak of [Ca2+]i induced by thrombin. It also inhibited actin polymerization and TXB2 production, suggesting that aggregation was important for not only the generation of the second peak of [Ca2+]i but also for actin polymerization and TXB2 production. PGI2 (5 nM) did not abolish but only delayed aggregation, TXB2 production, actin polymerization and the second peak of [Ca2+]i increase. These findings suggest that the secondary signals are caused by aggregation (fibrinogen-binding to the GPIIb/IIIa) in thrombin-aggregated platelets, which results in the TXA2 production and the secondary peak of [Ca2+]i increase, and the latter was dependent on actin polymerization.  相似文献   

6.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

7.
Extracellular ATP and UTP caused increases in the concentration of cytoplasmic free calcium ([Ca2+]i) and the intracellular level of inositol 1,4,5-trisphosphate (IP3), a second messenger for calcium mobilization, prior to the release of prostacyclin (PGI2) from cultured bovine pulmonary artery endothelial (BPAE) cells. The agonist specificity and dose-dependence were similar for nucleotide-mediated increases in IP3 levels, [Ca2+]i and PGI2 release. An increase in [Ca2+]; and PGI2 release was observed after addition of ionomycin, a calcium ionophore, to BPAE cells incubated in a calcium-free medium. The addition of ATP to the ionomycin-treated cells caused no further increase in [Ca2+]i or PGI2 release. The inability of ATP to cause an increase in [Ca2+]i or PGI2 release in ionomycin-treated cells was apparently due to the ionomycin-dependent depletion of intracellular calcium stores since the subsequent addition of extracellular calcium caused a significant increase in both [Ca2+]i and PGI2 release. Introduction of BAPTA, a calcium buffer, into BPAE cells inhibited ATP-mediated increases in [Ca2+]i and PGI2 release, further evidence that PGI2 release is dependent upon an increase in [Ca2+]i. The increase in [Ca2+]i elicited by ATP apparently caused the activation of a calmodulin-dependent phospholipase A2 since trifluoperazine, an inhibitor of calmodulin, and quinacrine, an inhibitor of phospholipase A2, prevented the stimulation of PGI2 release by ATP. Furthermore, ATP caused the specific hydrolysis of [14C]arachidonyl-labeled phosphatidylcholine and the generation of free arachidonic acid, the rate-limiting substrate for PGI2 synthesis, prior to the release of PGI2 from BPAE cells. These findings suggest that the increase in PGI2 release elicited by ATP and UTP is at least partially dependent upon a phospholipase C-mediated increase in [Ca2+]i and the subsequent activation of a phosphatidylcholine-specific phospholipase A2. ATP analogs modified in the adenine base or phosphate moiety caused PGI2 release with a rank order of agonist potency of adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) greater than 2-methylthioATP (2-MeSATP) greater than ATP, whereas alpha, beta methyleneATP and beta, gamma methyleneATP had no effect on PGI2 release.  相似文献   

8.
Elevation of intracellular calcium in response to trypsin, bradykinin, thrombin or histamine is associated with a proportional increase in PGI2 production in cultured human umbilical vein endothelial cells (HUVEC), bovine pulmonary artery endothelial cells (CPAE), and bovine aortic endothelial cells (BAEC). The major agonists that induce increases in intracellular calcium and PGI2 production are thrombin and trypsin in HUVEC, bradykinin in CPAE, and bradykinin and trypsin in BAEC. These results suggest that endothelial cells derived from different species or sites require different agonists to induce increases in intracellular calcium and PGI2 production and that only agonists which increase intracellular calcium can stimulate PGI2 production.  相似文献   

9.
The effect of platelet-activating factor (PAF-acether) on cytosolic free calcium, [Ca2+]i, in adherent human vascular endothelial cells in culture was directly determined using a new fluorescent calcium indicator, fura-2. It was found that PAF-acether but not lyso PAF-acether induced a rapid and transient increase in [Ca2+]i in endothelial cells. Restimulation with PAF-acether after the first challenge did not cause further response, while the cells were able to respond to thrombin. In the absence of extracellular calcium, PAF-acether evoked a similar transient increase, suggesting that PAF-acether raises [Ca2+]i mainly by discharging calcium from intracellular pools. PAF-acether-induced rise in [Ca2+]i was completely blocked by a specific antagonist, BN 52021. These results suggest the receptor-mediated increase in [Ca2+]i as an early event in PAF-acether activation of human vascular endothelial cells.  相似文献   

10.
Agonist induced increases in intracellular free calcium, [Ca2+]i, were measured in single Fura-2 loaded bovine aortic endothelial (BAE) cells by dual wavelength microspectrofluorimetry. Low doses of ATP (less than 10 microM) induced complex changes in [Ca2+]i. These changes usually consisted of a large initial transient peak with subsequent fluctuations superimposed upon a maintained rise in [Ca2+]i. Higher doses of ATP (greater than 50 microM) produced much simpler biphasic increases in [Ca2+]i in individual cells. Acetylcholine and bradykinin also elicited increases in [Ca2+]i in single cells in confluent monolayers of endothelial cells. However, only acetylcholine produced complex fluctuations. High doses of acetylcholine evoked simple rises in [Ca2+]i similar to those seen with high doses of ATP. In contrast, bradykinin evoked relatively simple rises in [Ca2+]i at all doses used. These results indicate that the mechanisms responsible for generating agonist induced increases in [Ca2+]i in BAE cells are not homogeneous. ATP and acetylcholine produced more complex Ca2+ changes or 'signatures' in single confluent bovine aortic endothelial cells than bradykinin. All three agonists appeared to release Ca2+ from intracellular stores as well as stimulating Ca2+ influx. The possible mechanisms underlying these phenomena are discussed.  相似文献   

11.
Activation of platelets by thrombin rapidly increases cytoplasmic free calcium, [Ca2+]i, measured by Quin -2, and induces secretion. Stimulators of adenylate cyclase (i.e. PGI2, PGD2, forskolin) suppressed or reversed the increase of [Ca2+]i. Inhibitors of adenylate cyclase (i.e. epinephrine, ADP), added before or after thrombin, counteracted PGI2, PGD2 and forskolin and thereby increased [Ca2+]i and restored secretion. Responses to epinephrine (via alpha-2 adrenoreceptors) and ADP were independent of extracellular Ca2+, but required maintained occupancy of thrombin receptors and intact cAMP-phosphodiesterase activity. These results indicate that cAMP serves as an inhibitory second-messenger that antagonizes the mobilization of Ca2+, an activator second-messenger.  相似文献   

12.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

13.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on serotonin-induced inositol phosphate (IP) accumulation and intracellular free Ca2+ concentrations [( Ca2+]i) was investigated in cultured rat vascular smooth muscle cells. Pretreatment with TPA had no effect on basal levels of both IP production and [Ca2+]i, whereas it significantly attenuated serotonin-induced increases in both IP production and [Ca2+]i. These data suggest that protein kinase C is involved in the negative feedback control of serotonin-induced rises in both IP production and [Ca2+]i.  相似文献   

14.
We have studied the effects of thrombin (alpha-thrombin) and Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe (SFLL), a peptide agonist of the platelet thrombin receptor in cultured human mesangial cells, and find that SFLL can reproduce the biochemical and morphological effects of thrombin. Treatment of mesangial cells with cAMP-elevating agents causes fragmentation of stress fibers, loss of the vitronectin receptor from sites of focal adhesion, and produces a change in shape from a flat to a more arborized configuration. These effects are prevented by both thrombin and SFLL. Thrombin and SFLL also initiate biochemical signaling events in mesangial cells by stimulating the metabolism of phospholipids. Both thrombin and SFLL stimulate release of inositol phosphates from [3H]inositol-labeled cells, elevation of cytosolic calcium, the formation of [3H]myristic acid-labeled diacylglycerol, an increase in the mass of diacylglycerol, 32P incorporation into phospholipids, and release of unesterified [3H]arachidonic acid from cells prelabeled with [3H]arachidonic acid. When present together, the effects of SFLL and thrombin on diacylglycerol formation, arachidonic acid production, and inositol phosphate production were not additive. This suggested that SFLL and thrombin were acting on the same receptor. This was further supported by our observations that cells pretreated with SFLL and subsequently exposed to thrombin (or vice versa) did not show elevated cytosolic calcium. We also show that phospholipase D is activated by demonstrating production of radiolabeled phosphatidylethanol when cells are treated with SFLL in the presence of ethanol. These findings indicate that SFLL can be used to study the receptor-mediated effects of thrombin in mesangial cells, thereby avoiding thrombin's proteolytic actions.  相似文献   

15.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

16.
In cultured endothelial cells harvested from human umbilical vein (HUVEC) or bovine aorta (BAEC) the 30 min incubation with calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) caused an increase in nitrite generation in HUVEC from basal 227 +/- 37 to 372 +/- 60 or to 325 +/- 33 pmoles per 10(6) cells, respectively, and in BAEC from basal 182 +/- 17 to 378 +/- 18 or to 423 +/- 66 pmoles per 106 cells (n = 6), respectively. Calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) next to 30 min incubation with BAEC increased release of 6-keto-PGF 1alpha from basal level of 9.4 +/- 1.8 to 96.2 +/- 5.1 or to 99.5 +/- 10.2 pmoles per 10(6) cells, respectively. The pretreatment with aspirin (300 microM) cut down this rise to 4.2 +/- 0.1 pmoles per 10(6) cells (n = 8). Basal cytoplasmic calcium levels, [Ca2+]i, in immortalised HUVEC cell line - ECV304, HUVEC and BAEC were 47.7 +/- 3.3 nM (n = 53), 68.3 +/- 5.0 nM (n = 30) and 53.1 +/- 3.0 nM (n = 15), respectively. In these cultured endothelial cells calcium ionophore A 23187 (0.1 microM) produced net maximum rise in [Ca2+]i by 157 +/-27 nM (n = 16)[ ECV304], by 107 +/- 58 nM (n=4) [HUVEC], and by 231.0 +/- 41.3 nM (n = 8) [BAEC], respectively, while ticlopidine (30 microM) produced net maximum rise in [Ca2+]i by 30.0 +/- 3.2 nM (n=9)[ECV304], 48.8 +/- 15.6 nM (n = 4)[HUVEC] and 28.4 +/- 5.4 nM (n = 8)[BAEC], respectively. Effect of ticlopidine on [Ca2+]i was not only weaker than that of calcium A 23187 but also its maximum appeared after a lag period that was 2 3 times longer than that for A23187. In ECV304 clopidogrel at concentrations of 10, 30 and 100 microM produced maximum increment of [Ca2+]i by 16.5 +/- 3.8 nM (n = 7), 47.0 +/- 6.9 nM (n = 8) and 67.2 +/- 8.3 nM (n = 8), respectively. Incubation of BAEC with A23187 (microM), ticlopidine or clopidogrel (100 microM) for 2 h did not influence viability of cultured endothelial cells. We claim that thienopyridines, independently of their delayed anti-platelet properties ex vivo do release NO and PGI2 from cultured endothelial cells in vitro. The above endothelial action of thienopyridines might be mediated by a rise in [Ca2+]i, however, this possibility has not been proved.  相似文献   

17.
Temporal changes in intracellular free Ca2+ concentration ([Ca2+]i) in cultured human foreskin fibroblasts were investigated using image analysis techniques to simultaneously monitor Lys-bradykinin (BK)- or thrombin-induced elevations of [Ca2+]i in each individual cell within a microscopic field. Responses to BK are heterogeneous with respect to the shapes of the [Ca2+]i time courses. Furthermore, the onsets of these responses follow a variable lag period such that the individual cell responses occur asynchronously. The asynchrony and heterogeneity of individual cell responses are not related to cell cycle differences since noncycling cells respond in a similar manner. When cells are ranked according to order of an initial response to BK (the first cell to respond is ranked 1, the second to respond is 2, etc.), restimulation of the same cells with BK elicits a similar order of cell responses, and the shape of the [Ca2+]i time course of an individual cell is similar for both responses to BK. If cells that were stimulated with BK are washed and restimulated with thrombin (which produces [Ca2+]i changes similar to those induced by BK), the response order to thrombin does not correspond to the response order following BK stimulation. These data suggest that the asynchrony of [Ca2+]i changes induced by BK or thrombin is characteristic for each mitogen and may be determined by cell-to-cell variation in receptor number.  相似文献   

18.
The regulation of free cytoplasmic calcium concentration ([Ca2+]i) was studied in bovine pulmonary artery endothelial cells (BPAEC). The cells were seeded on the inner surface of glass cuvettes, grown to confluency and loaded with INDO-1. Using a multiwavelength method for estimation of [Ca2+]i it was shown that in Ca2+ containing medium a rapid rise of [Ca2+]i occurs in response to bradykinin, ATP or thrombin followed by a much slower decrease in free cytoplasmic calcium. Binding of extracellular Ca2+ by EGTA lowered basal [Ca2+]i but had no effect on the rate of agonist-induced [Ca2+]i increase or its absolute amount. In contrast, the kinetics of [Ca2+]i decrease were entirely different. A rapid (less than 0.5 min) decrease in [Ca2+]i to the basal level was observed immediately after the maximum had been achieved. If excess Ca2+ was added to the medium after EGTA, a second [Ca2+]i rise in response to the agonists occurred. The decrease in [Ca2+]i after the second peak was several times slower than the decrease in Ca2+ free medium. It is concluded that Ca2+ entry from the external medium had no effect on the maximal increase in [Ca2+]i but provides a severalfold increase in the duration the endothelial cell responses to the agonists.  相似文献   

19.
The ability of the platelet agonists thapsigargin (Tg) and thrombin to elevate the cytoplasmic free calcium level ([Ca2+]i) was examined. Both agonists induced a transient increase of [Ca2+]i with a different time-course, however. Thus, the maximal [Ca2+]i was reached 15 sec and 2 min after stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation of a pronounced peak. The decline in [Ca2+]i observed after thrombin stimulation was not impaired by the calmodulin binding drug trifluoperazine but it was strongly reduced by vanadate, which suggests the active calcium transport systems to be insensitive to calmodulin. We put forward the hypothesis that the tumor promoting activity of Tg is attributable to its ability to stabilize [Ca2+]i on a new elevated steady state level.  相似文献   

20.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号