首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Our previous data demonstrated that nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) are involved in the process of anti-β2GPI/β2GPI-induced tissue factor (TF) expression in monocytes. However, the role of NF-κB and AP-1 in pathogenic mechanisms of antiphospholipid syndrome (APS) in vivo has been rarely studied. This study aimed to investigate whether NF-κB and c-Jun/AP-1 are involved in anti-β2GPI-induced expression of prothrombotic and proinflammatory molecules in mouse. IgG-APS or anti-β2GPI antibodies were injected into BALB/c mice in the presence or absence of PDTC (a specific inhibitor of NF-κB) and Curcumin (a potent inhibitor of AP-1) treatment. Our data showed that both IgG-APS and anti-β2GPI could induce the activation of NF-κB and c-Jun/AP-1 in mouse peritoneal macrophages. The anti-β2GPI-induced TF activity in homogenates of carotid arteries and peritoneal macrophages from mice could significantly decrease after PDTC and/or Curcumin treatment, in which PDTC showed the strongest inhibitory effect, but combination of two inhibitors had no synergistic effect. Furthermore, anti-β2GPI-induced expression of TF, VCAM-1, ICAM-1 and E-selectin in the aorta and expression of TF, IL-1β, IL-6 and TNF-α in peritoneal macrophages of mice were also significantly attenuated by PDTC and/or Curcumin treatment. These results indicate that both NF-κB and c-Jun/AP-1 are involved in regulating anti-β2GPI-induced expression of prothrombotic and proinflammatory molecules in vivo. Inhibition of NF-κB and c-Jun/AP-1 pathways may be beneficial for the prevention and treatment of thrombosis and inflammation in patients with APS.  相似文献   

4.
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF1Lβ3/Lβ3). In the TGF1Lβ3/Lβ3 mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF1−/− mice, the TGF1Lβ3/Lβ3 mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF1Lβ3/Lβ3 mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF1Lβ3/Lβ3 mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Oviposition is induced upon mating in most insects. Ovulation is a primary step in oviposition, representing an important target to control insect pests and vectors, but limited information is available on the underlying mechanism. Here we report that the beta adrenergic-like octopamine receptor Octβ2R serves as a key signaling molecule for ovulation and recruits protein kinase A and Ca2+/calmodulin-sensitive kinase II as downstream effectors for this activity. We found that the octβ2r homozygous mutant females are sterile. They displayed normal courtship, copulation, sperm storage and post-mating rejection behavior but were unable to lay eggs. We have previously shown that octopamine neurons in the abdominal ganglion innervate the oviduct epithelium. Consistently, restored expression of Octβ2R in oviduct epithelial cells was sufficient to reinstate ovulation and full fecundity in the octβ2r mutant females, demonstrating that the oviduct epithelium is a major site of Octβ2R’s function in oviposition. We also found that overexpression of the protein kinase A catalytic subunit or Ca2+/calmodulin-sensitive protein kinase II led to partial rescue of octβ2r’s sterility. This suggests that Octβ2R activates cAMP as well as additional effectors including Ca2+/calmodulin-sensitive protein kinase II for oviposition. All three known beta adrenergic-like octopamine receptors stimulate cAMP production in vitro. Octβ1R, when ectopically expressed in the octβ2r’s oviduct epithelium, fully reinstated ovulation and fecundity. Ectopically expressed Octβ3R, on the other hand, partly restored ovulation and fecundity while OAMB-K3 and OAMB-AS that increase Ca2+ levels yielded partial rescue of ovulation but not fecundity deficit. These observations suggest that Octβ2R have distinct signaling capacities in vivo and activate multiple signaling pathways to induce egg laying. The findings reported here narrow the knowledge gap and offer insight into novel strategies for insect control.  相似文献   

14.
Characterization of the Adaptor-related Protein Complex, AP-3   总被引:27,自引:3,他引:24       下载免费PDF全文
We have recently shown that two proteins related to two of the adaptor subunits of clathrincoated vesicles, p47 (μ3) and β-NAP (β3B), are part of an adaptor-like complex not associated with clathrin (Simpson, F., N.A. Bright, M.A. West, L.S. Newman, R.B. Darnell, and M.S. Robinson, 1996. J. Cell Biol. 133:749–760). In the present study we have searched the EST database and have identified, cloned, and sequenced a ubiquitously expressed homologue of β-NAP, β3A, as well as homologues of the α/γ and σ adaptor subunits, δ and σ3, which are also ubiquitously expressed. Antibodies raised against recombinant δ and σ3 show that they are the other two subunits of the adaptor-like complex. We are calling this complex AP-3, a name that has also been used for the neuronalspecific phosphoprotein AP180, but we feel that it is a more appropriate designation for an adaptor-related heterotetramer. Immunofluorescence using anti-δ antibodies reveals that the AP-3 complex is associated with the Golgi region of the cell as well as with more peripheral structures. These peripheral structures show only limited colocalization with endosomal markers and may correspond to a postTGN biosynthetic compartment. The δ subunit is closely related to the protein product of the Drosophila garnet gene, which when mutated results in reduced pigmentation of the eyes and other tissues. Because pigment granules are believed to be similar to lysosomes, this suggests either that the AP-3 complex may be directly involved in trafficking to lysosomes or alternatively that it may be involved in another pathway, but that missorting in that pathway may indirectly lead to defects in pigment granules.  相似文献   

15.
16.
17.
Mutations in the amyloid β-protein (Aβ) precursor gene cause autosomal dominant Alzheimer disease in a number of kindreds. In two such kindreds, the English and the Tottori, the mutations produce amyloid β-proteins containing amino acid substitutions, H6R and D7N, respectively, at the peptide N terminus. To elucidate the structural and biological effects of the mutations, we began by examining monomer conformational dynamics and oligomerization. Relative to their wild type homologues, and in both the Aβ40 and Aβ42 systems, the English and Tottori substitutions accelerated the kinetics of secondary structure change from statistical coil → α/β → β and produced oligomer size distributions skewed to higher order. This skewing was reflected in increases in average oligomer size, as measured using electron microscopy and atomic force microscopy. Stabilization of peptide oligomers using in situ chemical cross-linking allowed detailed study of their properties. Each substitution produced an oligomer that displayed substantial β-strand (H6R) or α/β (D7N) structure, in contrast to the predominately statistical coil structure of wild type Aβ oligomers. Mutant oligomers functioned as fibril seeds, and with efficiencies significantly higher than those of their wild type homologues. Importantly, the mutant forms of both native and chemically stabilized oligomers were significantly more toxic in assays of cell physiology and death. The results show that the English and Tottori mutations alter Aβ assembly at its earliest stages, monomer folding and oligomerization, and produce oligomers that are more toxic to cultured neuronal cells than are wild type oligomers.  相似文献   

18.
19.
The enantiomerically enriched γ- and δ-decalactones (4a and 4b) were prepared from corresponding racemic primary-secondary 1,4- and 1,5-diols (1a and 1b), as products of enzymatic oxidation catalyzed by different alcohol dehydrogenases. The results of biotransformations indicated that the oxidation processes catalyzed by alcohol dehydrogenase (HLADH), both isolated from horse liver and recombinant in Escherichia coli, were characterized by the highest degree of conversion with moderate enantioselectivity of the reaction. Useful, environmentally friendly extraction procedure of decalactones (4a and 4b) based on hydrodistillation using a Deryng apparatus was developed. Both racemic lactones (4a and 4b), as well as their enantiomerically enriched isomers, were tested for feeding deterrent activity against Myzus persicae. The effect of these compounds on probing, feeding and settling behavior of M. persicae was studied in vivo. The deterrent activity of decalactones (4a and 4b) against aphids depended on the size of the lactone ring and the enantiomeric purity of the compounds. δ-Decalactone (4b) appeared inactive against M. persicae while γ-decalactone (4a) restrained aphid probing at ingestional phase. Only (–)-(S)-γ-decalactone (4a) had strong and durable (i.e. lasting for at least 24 hours) limiting effect, expressed at phloem level.  相似文献   

20.
Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号