共查询到5条相似文献,搜索用时 0 毫秒
1.
Malathi Mathiyazhakan Weiwei Chan Claus-Dieter Ohl Chenjie Xu 《Journal of visualized experiments : JoVE》2016,(108)
Photo-responsive nanoparticles (NPs) have received considerable attention because of their potential in providing spatial, temporal, and dosage control over the drug release. However, most of the relevant technologies are still in the development process and are unprocurable by clinics. Here, we describe a facile fabrication of these photo-responsive NPs with commercially available gold NPs and thermo-responsive liposomes. Calcein is used as a model drug to evaluate the encapsulation efficiency and the release kinetic profile upon heat/light stimulation. Finally, we show that this photo-triggered release is due to the membrane disruption caused by microbubble cavitation, which can be measured with hydrophone. 相似文献
2.
Lindsay M. Thomson Brian D. Polizzotti Frances X. McGowan John N. Kheir 《Journal of visualized experiments : JoVE》2014,(87)
Gas-filled microbubbles have been developed as ultrasound contrast and drug delivery agents. Microbubbles can be produced by processing surfactants using sonication, mechanical agitation, microfluidic devices, or homogenization. Recently, lipid-based oxygen microbubbles (LOMs) have been designed to deliver oxygen intravenously during medical emergencies, reversing life-threatening hypoxemia, and preventing subsequent organ injury, cardiac arrest, and death. We present methods for scaled-up production of highly oxygenated microbubbles using a closed-loop high-shear homogenizer. The process can produce 2 L of concentrated LOMs (90% by volume) in 90 min. Resulting bubbles have a mean diameter of ~2 μm, and a rheologic profile consistent with that of blood when diluted to 60 volume %. This technique produces LOMs in high capacity and with high oxygen purity, suggesting that this technique may be useful for translational research labs. 相似文献
3.
AbstractPlasma surface modification is an effective method for changing material properties to control cell behavior on a surface. This study investigates the efficiency of a plasma polymerized 4,7,10-trioxa-1,13-tridecanediamine (ppTTDDA) film coated on a polystyrene (PS) Petri dish, which is a biocompatible surface with carbon- and oxygen-based chemical species. The adhesion, proliferation, and migration properties of bovine aortic endothelial cells (BAECs) were profoundly enhanced in the ppTTDDA-coated PS Petri dishes without extracellular matrix (ECM) proteins, when compared with the uncoated PS Petri dishes. These observations indicate that ppTTDDA-coated PS Petri dishes can directly interact with cells, regardless of cell adhesion molecules. The increased cell affinity was attributed to the high concentration of carboxyl group on the surface of the ppTTDDA film. Such a carboxyl surface showed an excellent ability to promote culturing of BAECs. Plasma surface modification techniques are effective in improving biocompatibility and provide a surface environment for cell culture. 相似文献
4.
《Journal of liposome research》2013,23(3):255-260
In this study, NOH (NOH?=?N-octadecyl-4-[(D-galactopyranosyl)oxy]-2,3,5,6-tetrahydroxy hexanamide) was enzymatically synthesized as a targeting molecule and incorporated into liposomes to prepare a liposome surface modified with galactose. Glycyrrhetinic-acid–loaded liposome (GA-LP) and glycyrrhetinic-acid–loaded liposome surface modified with galactose (NOH-GA-LP) were prepared by the ethanol-injection method. NOH-GA-LP was characterized by morphology, particle size, zeta potential, encapsulation efficiency, release in vitro, and stability. The size of spherical particles was in the range of 179–211?nm. Spherical particles exhibit a positive electrical charge (38.7 mV) and possess high encapsulation efficiency (91.3%) and show sustained release (72% over 48 hours) in vitro. This novel approach for the liposome surface modified with galactose by enzymatic synthesis is expected to provide potential application as a drug carrier for active targeted delivery to hepatocytes. 相似文献
5.
Sissi de Beer Edit Kutnyanszky Martin H. Müser G. Julius Vancso 《Journal of visualized experiments : JoVE》2014,(94)
Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. 相似文献