首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

2.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

3.
In order to study the nutrient and water uptake of rootsin situ, we need a quantitative three-dimensional dynamic model of the root system architecture. The present model takes into account current observations on the morphogenesis of the maize root system. It describes the root system as a set of root axes, characterised by their orders and their inter-node of origin. The evolution of the simulated pattern is achieved by three processes, occuring at each time step: emission of new primary root axes from the shoot, growth and branching of existing root axes. The elongation of an axis depends on its order, inter-node and local growing conditions. Branches appear acropetally at a specified distance from the apex and from former branches, along ranks facing xylem poles, with a branching angle specific to their order and inter-node. From the three-dimensional branched patterns simulated by the model, various outputs, such as root profiles or cross-section maps can be computed, compared to observed data and used as inputs in uptake models. A number of examples of such possible outputs are presented.  相似文献   

4.

Background and Aims

The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions.

Methods

Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data.

Key Results

The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase.

Conclusions

The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.  相似文献   

5.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

6.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

7.
玉米离体根尖的多层滤纸床液体静止培养方法   总被引:8,自引:1,他引:7  
设计建立了适于玉米根尖离体培养的多层滤纸床液体静止培养方法,培养的适宜体系为:1/4MS大量元素改良+1/2MS微量元素+IBA0.1-0.3mg/L,黑暗培养。该方法避免了传统液体培养通气状况不良的问题,玉米根的生长速度可达到1-2cm/d,分支和生长正常。该方法在控制条件下快速繁殖根系,成本低廉,简便易行,是根系发育和生理研究的理想实验体系。  相似文献   

8.
Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5–6-fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.  相似文献   

9.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.  相似文献   

10.

Background and Aims

Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature.

Methods

Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes.

Key Results

Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen.

Conclusions

The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states.  相似文献   

11.
The genetic architecture of nodal root number in maize   总被引:2,自引:0,他引:2  
The maize nodal root system plays a crucial role in the development of the aboveground plant and determines the yield via the uptake of water and nutrients in the field. However, the genetic architecture of the maize nodal root system is not well understood, and it has become the ‘dark matter’ of maize genetics. Here, a large teosinte‐maize population was analyzed, and high‐resolution mapping revealed that 62 out of 133 quantitative trait loci (QTLs), accounting for approximately half of the total genetic variation in nodal root number, were derived from QTLs for flowering time, which was further validated through a transgenic analysis and a genome‐wide association study. However, only 16% of the total genetic variation in nodal root number was derived from QTLs for plant height. These results gave a hint that flowering time played a key role in shaping nodal root number via indirect selection during maize domestication. Our results also supported that more aerial nodal roots and fewer crown roots might be favored in temperate maize, and this root architecture might efficiently improve root‐lodging resistance and the ability to take up deep water and nitrogen under dense planting.  相似文献   

12.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   

13.

Background and Aims

Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA.

Methods

In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences.

Key Results

In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes.

Conclusions

The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.  相似文献   

14.
In higher plants, histidine-aspartate phosphorelays (two-component system) are involved in hormone signaling and stress responses. In these systems, histidine-containing phosphotransfer (HPt) proteins mediate the signal transmission from sensory histidine kinases to response regulators, including integration of several signaling pathways or branching into different pathways. We have determined the crystal structure of a maize HPt protein, ZmHP2, at 2.2 A resolution. ZmHP2 has six alpha-helices with a four-helix bundle at the C-terminus, a feature commonly found in HPt domains. In ZmHP2, almost all of the conserved residues among plant HPt proteins surround this histidine, probably forming the docking interface for the receiver domain of histidine kinase or the response regulator. Arg102 of ZmHP2 is conserved as a basic residue in plant HPt proteins. In bacteria, it is replaced by glutamine or glutamate that form a hydrogen bond to Ndelta atoms of the phospho-accepting histidine. It may play a key role in the complex formation of ZmHP2 with receiver domains.  相似文献   

15.
16.

Background and Aims

Shining a laser onto biological material produces light speckles termed biospeckles. Patterns of biospeckle activity reflect changes in cell biochemistry, developmental processes and responses to the environment. The aim of this work was to develop methods to investigate the biospeckle activity in roots and to characterize the distribution of its intensity and response to thigmostimuli.

Methods

Biospeckle activity in roots of Zea mays, and also Jatropha curcas and Citrus limonia, was imaged live and in situ using a portable laser and a digital microscope with a spatial resolution of 10 μm per pixel and the ability to capture images every 0·080 s. A procedure incorporating a Fujii algorithm, image restoration using median and Gaussian filters, image segmentation using maximum-entropy threshold methods and the extraction of features using a tracing algorithm followed by spline fitting were developed to obtain quantitative information from images of biospeckle activity. A wavelet transform algorithm was used for spectral decomposition of biospeckle activity and generalized additive models were used to attribute statistical significance to changes in patterns of biospeckle activity.

Key Results

The intensity of biospeckle activity was greatest close to the root apex. Higher frequencies (3–6 Hz) contributed most to the total intensity of biospeckle activity. When a root encountered an obstacle, the intensity of biospeckle activity decreased abruptly throughout the root system. The response became attenuated with repeated thigmostimuli.

Conclusions

The data suggest that at least one component of root biospeckle activity resulted from a biological process, which is located in the zone of cell division and responds to thigmostimuli. However, neither individual cell division events nor root elongation is likely to be responsible for the patterns of biospeckle activity.  相似文献   

17.
Nitrogen regulation of root branching   总被引:18,自引:0,他引:18  
BACKGROUND: Many plant species can modify their root architecture to enable them to forage for heterogeneously distributed nutrients in the soil. The foraging response normally involves increased proliferation of lateral roots within nutrient-rich soil patches, but much remains to be understood about the signalling mechanisms that enable roots to sense variations in the external concentrations of different mineral nutrients and to modify their patterns of growth and development accordingly. SCOPE: In this review we consider different aspects of the way in which the nitrogen supply can modify root branching, focusing on Arabidopsis thaliana. Our current understanding of the mechanism of nitrate stimulation of lateral root growth and the role of the ANR1 gene are summarized. In addition, evidence supporting the possible role of auxin in regulating the systemic inhibition of early lateral root development by high rates of nitrate supply is presented. Finally, we examine recent evidence that an amino acid, L-glutamate, can act as an external signal to elicit complex changes in root growth and development. CONCLUSIONS: It is clear that plants have evolved sophisticated pathways for sensing and responding to changes in different components of the external nitrogen supply as well as their own internal nitrogen status. We speculate on the possibility that the effects elicited by external L-glutamate represent a novel form of foraging response that could potentially enhance a plant's ability to compete with its neighbours and micro-organisms for localized sources of organic nitrogen.  相似文献   

18.
Two methods for estimating the size of the maize (Zea mays l.) root system from soil cores taken in the field were compared. The spatially weighed block method of estimation accounted for variation in root density by using 18 samples per plant which varied in distance from plant and soil depth. This method was compared to an estimation which averaged all of the 18 samples together. Both methods gave surprisingly similar estimates for total root growth. Increased root growth in the surface soil layers, due to tillage and N fertilization, did not impact on the estimation of total root growth. Total root length remained unchanged or increased with N fertilization, while root weight remained the same or decreased. Root mass per length decreased with N fertilization. The estimated size of the root system was used to calculate root:shoot weight ratios. The largest root:shoot ratio was found in the vegetative stage and decreased throughout the rest of the season. In this field experiment, the estimated size of the root system at 8 weeks after planting was not significantly different from the size at silking or harvest. Nitrogen fertilization significantly decreased the root:shoot weight ratio. However, tillage did not significantly change the ratio.  相似文献   

19.
Summary. The oxidation of hydroquinone with H2O2 in the presence of mitochondria isolated from maize (Zea mays L.) roots was studied. The results indicate that a reduced form of quinone may be a substrate of mitochondrial peroxidases. Specific activities in different mitochondrial isolates, the apparent K m for hydrogen peroxide and hydroquinone, and the influence of some known peroxidase inhibitors or effectors are presented. Zymographic assays revealed that all mitochondrial peroxidases, which were stained with 4-chloro-1-naphthol, were capable of oxidizing hydroquinone. A possible antioxidative role of hydroquinone peroxidase in H2O2 scavenging within the mitochondria, in cooperation with ascorbate or coupled with mitochondrial NAD(P)H dehydrogenases, is proposed. Correspondence: M. Vuletić, Laboratory of Plant Physiology, Maize Research Zemun Polje, P.O. Box 89, 11185 Belgrade, Serbia.  相似文献   

20.
The direction of root growth can be studied by analyzing the trajectories of roots growing in soil. Both the primary seminal root and nodal roots of maize attain a preferred, or liminal, angle of growth that deviates from the vertical. These roots are said to be plagiogravitropic. Experiments using plants grown in soil-filled boxes revealed that the primary seminal root is truly plagiogravitropic. It shows both positive and negative gravitropism in response to gravity stimuli and tends to maintain its direction even after growing around obstacles. These are experimental results suggesting that plagiogravitropic growth is controlled by internal factors. The orientation of the grain affects the establishment of the liminal angle of the primary seminal root, and both the position of their node of origin and the root diameter are closely related to the plagiogravitropic behaviour of nodal roots. Several external factors are also known to influence plagiogravitropism. Low soil water content causes a decrease in the angle of growth and soil mechanical resistance suppresses the gravitropic curvature. Plagiogravitropic behaviour of both seminal and nodal roots plays a significant role in shaping the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号