首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.

Background and Aims

The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions.

Methods

Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data.

Key Results

The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase.

Conclusions

The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.  相似文献   

2.
Lo?c Pagès 《Annals of botany》2014,114(3):591-598

Background and Aims

Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits.

Methods

Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance.

Results

The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals.

Conclusions

A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions.  相似文献   

3.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   

4.
Endo I  Tange T  Osawa H 《Annals of botany》2011,108(2):279-290

Background and Aims

Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes.

Methods

The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max).

Key Results

Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean.

Conclusions

These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.  相似文献   

5.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

6.

Background and Aims

Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA.

Methods

In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences.

Key Results

In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes.

Conclusions

The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.  相似文献   

7.
8.

Background and Aims

Autoregulation of nodulation is a long-distance shoot–root signalling regulatory system that regulates nodule meristem proliferation in legume plants. However, due to the intricacy and subtleness of the signalling nature in plants, molecular and biochemical details underlying mechanisms of autoregulation of nodulation remain largely unknown. The purpose of this study is to use functional–structural plant modelling to investigate the complexity of this signalling system. There are two major challenges to be met: modelling the 3D architecture of legume roots with nodulation and co-ordinating signalling-developmental processes with various rates.

Methods

Soybean (Glycine max) was chosen as the target legume. Its root system was observed to capture lateral root branching and nodule distribution patterns. L-studio, a software tool supporting context-sensitive L-system modelling, was used for the construction of the architectural model and integration with the internal signalling.

Key Results

A branching pattern with regular radial angles was found between soybean lateral roots, from which a root mapping method was developed to characterize the laterals. Nodules were mapped based on ‘nodulation section’ to reveal nodule distribution. A root elongation algorithm was then developed for simulation of root development. Based on the use of standard sub-modules, a synchronization algorithm was developed to co-ordinate multi-rate signalling and developmental processes.

Conclusions

The modelling methods developed here not only allow recreation of legume root architecture with lateral branching and nodulation details, but also enable parameterization of internal signalling to produce different regulation results. This provides the basis for using virtual experiments to help in investigating the signalling mechanisms at work.  相似文献   

9.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

10.
11.
Root cortical burden influences drought tolerance in maize   总被引:1,自引:0,他引:1  

Background and Aims

Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter.

Methods

RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms.

Key Results

Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance.

Conclusions

The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.  相似文献   

12.

Background and Aims

Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus.

Methods

Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus [‘Tapidor’ × ‘Ningyou 7’ (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP.

Key Results

In general, root and biomass traits were highly correlated under LP and HP conditions. ‘Ningyou 7’ had greater LRL, LRN and LRD than ‘Tapidor’, at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06.

Conclusions

High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.  相似文献   

13.

Background and Aims

The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete–plant interaction at the tissue and cellular levels.

Methods

Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection.

Key Results

Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin.

Conclusions

Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant–microbe interactions.  相似文献   

14.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

15.

Background and Aims

In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash.

Methods

The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively.

Key Results

Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots.

Conclusions

The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.  相似文献   

16.

Background and Aims

Strongly coherent sandsheaths that envelop perennial roots of many monocotyledonous species of arid environments have been described for over a century. This study, for the first time, details the roles played by the structural development of the subtending roots in the formation and persistence of the sheaths.

Methods

The structural development of root tissues associated with persistent sandsheaths was studied in Lyginia barbata, native to the Western Australian sand plains. Cryo-scanning electron microscopy CSEM, optical microscopy and specific staining methods were applied to fresh, field material. The role of root hairs was clarified by monitoring sheath development in roots separated from the sand profile by fine mesh.

Key Results and Conclusions

The formation of the sheaths depends entirely on the numerous living root hairs which extend into the sand and track closely around individual grains enmeshing, by approx. 12 cm from the root tip, a volume of sand more than 14 times that of the subtending root. The longevity of the perennial sheaths depends on the subsequent development of the root hairs and of the epidermis and cortex. Before dying, the root hairs develop cellulosic walls approx. 3 µm thick, incrusted with ferulic acid and lignin, which persist for the life of the sheath. The dead hairs remain in place fused to a persistent platform of sclerified epidermis and outer cortex. The mature cortex comprises this platform, a wide, sclerified inner rim and a lysigenous central region – all dead tissue. We propose that the sandsheath/root hair/epidermis/cortex complex is a structural unit facilitating water and nutrient uptake while the tissues are alive, recycling scarce phosphorus during senescence, and forming, when dead, a persistent essential structure for maintenance of a functional stele in the perennial Lyginia roots.  相似文献   

17.
18.

Background

Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.

Methods

The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.

Key Results

Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.

Conclusions

The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.  相似文献   

19.

Background and Aims

The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress.

Methods

To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy.

Key Results

Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root.

Conclusions

Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this ‘sandwich’ method it was shown that mannitol promoted aerenchyma formation in the primary roots of rice.  相似文献   

20.
Bo Xu  Shen Yu 《Annals of botany》2013,111(6):1189-1195

Background and Aims

Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings.

Methods

A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined.

Key Results

Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd.

Conclusions

Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of wetland plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号