首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD) with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI) with a regional homogeneity (ReHo) algorithm.

Materials and Methods

rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years) and 20 healthy controls (13 male, 7 female, 36±10.27 years). Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST]) and laboratory tests were performed in all patients. The Kendall''s coefficient of concordance (KCC) was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration.

Results

Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL), medial frontal cortex (MFC) and left precuneus (PCu). The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL) (all P<0.05, AlphaSim corrected). No significant correlations were found between any regional ReHo values and disease duration, dialysis duration and serum creatinine values in ESRD patients (all P>0.05, AlphaSim corrected).

Conclusion

Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN), frontal and parietal lobes might be trait-related in MNE. The ReHo analysis may be potentially valuable for elucidating neurocognitive abnormalities of ESRD patients and detecting the development from non-NE to MNE.  相似文献   

2.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

3.

Aim

We sought to use a regional homogeneity (ReHo) approach as an index in resting-state functional magnetic resonance imaging (fMRI) to investigate the features of spontaneous brain activity within the default mode network (DMN) in patients suffering from bipolar depression (BD).

Methods

Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD) total score, and ReHo in regions with significant group differences.

Results

Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group.

Conclusions

Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.  相似文献   

4.
Han Y  Lui S  Kuang W  Lang Q  Zou L  Jia J 《PloS one》2012,7(2):e28664

Background

Anatomical and functional deficits have been studied in patients with amnestic mild cognitive impairment (MCI). However, it is unclear whether and how the anatomical deficits are related to the functional alterations. Present study aims to characterize the association between anatomical and functional deficits in MCI patients.

Methods

Seventeen amnestic MCI patients and 18 healthy aging controls were scanned using a T1 Weighted MPRAGE sequence and a gradient-echo echo-planar imaging sequence. Clinical severity of MCI patients was evaluated by using Clinical Dementia Rating, Mini Mental State Examination (MMSE), Clock Drawing Test, Auditory Verbal Learning Test and Activities of Daily Living. VBM with DARTEL was used to characterize the gray matter deficits in MCI. Regional amplitude of low-frequency (0.01–0.08 Hz) fluctuations (ALFF) was used to evaluate regional functional alteration in MCI and fractional ALFF(fALFF) in slow 4 (0.027–0.073 Hz) and slow 5 (0.01–0.027 Hz) were also calculated.

Results

Significantly decreased gray matter volume (GMV) was observed in amnestic MCI group mainly in bilateral prefrontal, left temporal and posterior cingulate cortex. Significant positive correlation was observed between the GMV in left inferior frontal gyrus and MMSE scores. Interestingly, decreased ALFF/fALFF was revealed in MCI group compared to controls mainly in prefrontal, left parietal regions and right fusiform gyrus, while the increased ALFF/fALFF was found in limbic and midbrain. Furthermore, the changes of fALFF in MCI in the slow-5 band were greater than those in the slow-4. No significant correlation was found between the morphometric and functional results.

Conclusions

Findings from the study document that wide spread brain volume reduction accompanied with decreased and increased regional function in MCI, while the anatomical and functional changes were independently. Therefore, the combination of structural and functional MRI methods would provide complementary information and together advance our understanding of the pathophysiology underlying the symptoms of MCI.  相似文献   

5.

Background

Why are some people happier than others? This question has intrigued many researchers. However, limited work has addressed this question within a neuroscientific framework.

Methods

The present study investigated the neural correlates of trait happiness using the resting-state functional magnetic resonance imaging (rs-fMRI) approach. Specifically, regional homogeneity (ReHo) was examined on two groups of young adults: happy and unhappy individuals (N = 25 per group).

Results

Decreased ReHo in unhappy relative to happy individuals was observed within prefrontal cortex, medial temporal lobe, superior temporal lobe, and retrosplenial cortex. In contrast, increased ReHo in unhappy relative to happy individuals was observed within the dorsolateral prefrontal cortex, middle cingulate gyrus, putamen, and thalamus. In addition, the ReHo within the left thalamus was negatively correlated with Chinese Happiness Inventory (CHI) score within the happy group.

Limitations

As an exploratory study, we examined how general trait happiness is reflected in the regional homogeneity of intrinsic brain activity in a relatively small sample. Examining other types of happiness in a larger sample using a multitude of intrinsic brain activity indices are warranted for future work.

Conclusions

The local synchronization of BOLD signal is altered in unhappy individuals. The regions implicated in this alteration partly overlapped with previously identified default mode network, emotional circuitry, and rewarding system, suggesting that these systems may be involved in happiness.  相似文献   

6.

Background

Patients with somatization disorder (SD) have altered neural activity in the brain regions of the default mode network (DMN). However, the regional alteration of the DMN in SD remains unknown. The present study was designed to investigate the regional alterations of the DMN in patients with SD at rest.

Methods

Twenty-five first-episode, medication-naive patients with SD and 28 age-, sex-, education- matched healthy controls underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The fractional amplitude of low-frequency fluctuations (fALFF) was applied to analyze the data.

Results

Patients with SD showed a dissociation pattern of resting-state fALFF in the DMN, with increased fALFF in the bilateral superior medial prefrontal cortex (MPFC, BA8, 9) and decreased fALFF in the left precuneus (PCu, BA7). Furthermore, significantly positive correlation was observed between the z values of the voxels within the bilateral superior MPFC and somatization subscale scores of the Symptom Check List (SCL-90) in patients with SD.

Conclusions

Our findings indicate that there is a dissociation pattern of the anterior and posterior DMN in first-episode, treatment-naive patients with SD. The results provide new insight for the importance of the DMN in the pathophysiology of SD.  相似文献   

7.

Background

Autosomal dominant inheritance of germline mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene are a major risk factor for pulmonary arterial hypertension (PAH). While previous studies demonstrated a difference in severity between BMPR2 mutation carriers and noncarriers, it is likely disease severity is not equal among BMPR2 mutations. We hypothesized that patients with missense BMPR2 mutations have more severe disease than those with truncating mutations.

Methods

Testing for BMPR2 mutations was performed in 169 patients with PAH (125 with a family history of PAH and 44 with sporadic disease). Of the 106 patients with a detectable BMPR2 mutation, lymphocytes were available in 96 to functionally assess the nonsense-mediated decay pathway of RNA surveillance. Phenotypic characteristics were compared between BMPR2 mutation carriers and noncarriers, as well as between those carriers with a missense versus truncating mutation.

Results

While there was a statistically significant difference in age at diagnosis between carriers and noncarriers, subgroup analysis revealed this to be the case only for females. Among carriers, there was no difference in age at diagnosis, death, or survival according to exonic location of the BMPR2 mutation. However, patients with missense mutations had statistically significant younger ages at diagnosis and death, as well as shorter survival from diagnosis to death or lung transplantation than those with truncating mutations. Consistent with this data, the majority of missense mutations were penetrant prior to age 36 years, while the majority of truncating mutations were penetrant after age 36 years.

Conclusion

In this cohort, BMPR2 mutation carriers have more severe PAH disease than noncarriers, but this is only the case for females. Among carriers, patients with missense mutations that escape nonsense-mediated decay have more severe disease than those with truncating mutations. These findings suggest that treatment and prevention strategies directed specifically at BMPR2 pathway defects may need to vary according to the type of mutation.  相似文献   

8.

Background

Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects.

Methods

We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis.

Results

We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis.

Conclusion

DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-011-0233-y) contains supplementary material, which is available to authorized users.  相似文献   

9.
L Ni  R Qi  LJ Zhang  J Zhong  G Zheng  Z Zhang  Y Zhong  Q Xu  W Liao  Q Jiao  X Wu  X Fan  GM Lu 《PloS one》2012,7(7):e42016

Background

Little is known about how spontaneous brain activity progresses from non-hepatic encephalopathy (non-HE) to minimal HE (MHE). The purpose of this study was to evaluate the evolution pattern of spontaneous brain activities in cirrhotic patients using resting-state fMRI with a regional homogeneity (ReHo) method.

Methodology/Principal Findings

Resting-state fMRI data were acquired in 47 cirrhotic patients (minimal HE [MHE], n = 20, and non-HE, n = 27) and 25 age-and sex-matched healthy controls. The Kendall’s coefficient of concordance (KCC) was used to measure the regional homogeneity. The regional homogeneity maps were compared with ANOVA tests among MHE, non-HE, and healthy control groups and t-tests between each pair in a voxel-wise way. Correlation analyses were performed to explore the relationships between regional ReHo values and Child-Pugh scores, number connection test type A (NCT-A), digit symbol test (DST) scores, venous blood ammonia levels. Compared with healthy controls, both MHE and non-HE patients showed decreased ReHo in the bilateral frontal, parietal and temporal lobes and increased ReHo in the bilateral caudate. Compared with the non-HE, MHE patients showed decreased ReHo in the bilateral precuneus, cuneus and supplementary motor area (SMA). The NCT-A of cirrhotic patients negatively correlated with ReHo values in the precuneus, cuneus and lingual gyrus. DST scores positively correlated with ReHo values in the cuneus, precuneus and lingual gyrus, and negatively correlated with ReHo values in the bilateral caudate (P<0.05, AlphaSim corrected).

Conclusions/Significance

Diffused abnormal homogeneity of baseline brain activity was nonspecific for MHE, and only the progressively decreased ReHo in the SMA and the cuneus, especially for the latter, might be associated with the development of MHE. The ReHo analysis may be potentially valuable for detecting the development from non-HE to MHE.  相似文献   

10.

Background

Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging.

Methods

A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.

Results

Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.

Conclusion

Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.  相似文献   

11.

Aims

Hypertrophic cardiomyopathy (HCM) is a frequent cause of sudden cardiac death (SCD) due to exercise-related ventricular arrhythmias (ERVA); however the pathological substrate is uncertain. The aim was to determine the prevalence of ERVA and their relation with fibrosis as determined by cardiac magnetic resonance imaging (CMR) in carriers of an HCM causing mutation.

Methods

We studied the prevalence and origin of ERVA and related these with fibrosis on CMR in a population of 31 HCM mutation carriers.

Results

ERVA occurred in seven patients (23%) who all showed evidence of fibrosis (100% ERVA(+) vs. 58% ERVA(-), p = 0.04). No ventricular tachycardia or ventricular fibrillation occurred. In patients with ERVA, the extent of fibrosis was significantly larger (8 ± 4% vs. 3 ± 4%, p = 0.02). ERVA originated from areas with a high extent of fibrosis or regions directly adjacent to these areas.

Conclusions

ERVA in HCM mutation carriers arose from the area of fibrosis detected by CMR; ERVA seems closely related to cardiac fibrosis. Fibrosis as detected by CMR should be evaluated as an additional risk factor to further delineate risk of SCD in carriers of an HCM causing mutation.  相似文献   

12.

Background

Severe osteoarthritis and thoracic aortic aneurysms have recently been associated with mutations in the SMAD3 gene, but the full clinical spectrum is incompletely defined.

Methods

All SMAD3 gene mutation carriers coming to our centre and their families were investigated prospectively with a structured panel including standardized clinical workup, blood tests, total body computed tomography, joint X-rays. Electroneuromyography was performed in selected cases.

Results

Thirty-four SMAD3 gene mutation carriers coming to our centre were identified and 16 relatives were considered affected because of aortic surgery or sudden death (total 50 subjects). Aortic disease was present in 72%, complicated with aortic dissection, surgery or sudden death in 56% at a mean age of 45 years. Aneurysm or tortuosity of the neck arteries was present in 78%, other arteries were affected in 44%, including dissection of coronary artery. Overall, 95% of mutation carriers displayed either aortic or extra-aortic arterial disease. Acrocyanosis was also present in the majority of patients. Osteoarticular manifestations were recorded in all patients. Joint involvement could be severe requiring surgery in young patients, of unusual localization such as tarsus or shoulder, or mimicking crystalline arthropathy with fibrocartilage calcifications. Sixty eight percent of patients displayed neurological symptoms, and 9 suffered peripheral neuropathy. Electroneuromyography revealed an axonal motor and sensory neuropathy in 3 different families, very evocative of type II Charcot-Marie-Tooth (CMT2) disease, although none had mutations in the known CMT2 genes. Autoimmune features including Sjogren’s disease, rheumatoid arthritis, Hashimoto’s disease, or isolated autoantibodies- were found in 36% of patients.

Interpretation

SMAD3 gene mutations are associated with aortic dilatation and osteoarthritis, but also autoimmunity and peripheral neuropathy which mimics type II Charcot-Marie-Tooth.  相似文献   

13.

Introduction

Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED) which is caused by genetic ectodysplasin A (EDA) deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom.

Methods

A large Chinese XLHED family was reported and the entire coding region and exon–intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers’ tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system.

Results

A known frameshift mutation (c.573–574 insT) was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI), 18 (78.26%) carriers were hypermethylated at these 4 sites.

Conclusion

Chinese XLHED carriers often have a hypermethylated EDA promoter.  相似文献   

14.

Introduction

Adrenal steroidogenesis is essential for human survival and depends on the availability of the precursor cholesterol. Male subjects with low plasma levels of high density lipoprotein (HDL) cholesterol are characterized by decreased adrenal function. Whether this is also the case in female subjects with low plasma HDL-C levels is unresolved to date.

Findings

15 female ATP binding cassette transporter AI (ABCAI) and 14 female lecithin-cholesterol acyltransferase (LCAT) were included in the study. HDL-C levels were 38% and 41% lower in ABCA1 and LCAT mutation carriers compared to controls, respectively. Urinary steroid excretion of 17-ketogenic steroids or 17-hydroxy corticosteroids did not differ between 15 female ABCA1 mutation carriers (p = 0.27 vs 0.30 respectively) and 30 matched normolipidemic controls or between 14 female LCAT mutation carriers and 28 matched normolipidemic controls (p = 0.10 and 0.14, respectively). Cosyntropin testing in an unselected subgroup of 8 ABCA1 mutation carriers and 3 LCAT mutation carriers did not reveal differences between carriers and controls.

Conclusion

Adrenal function in females with molecularly defined low HDL-C levels is not different from controls. The discrepancy with the finding of impaired steroidogenesis in males with molecularly defined low HDL-C levels underscores the importance of gender specific analyses in cholesterol-related research.  相似文献   

15.

Background

Obsessive-compulsive disorder (OCD) is a mental illness characterized by the loss of control. Because the cingulate cortex is believed to be important in executive functions, such as inhibition, we used functional magnetic resonance imaging (fMRI) techniques to examine whether and how activity and functional connectivity (FC) of the cingulate cortex were altered in drug-naïve OCD patients.

Methods

Twenty-three medication-naïve OCD patients and 23 well-matched healthy controls received fMRI scans in a resting state. Functional connectivities of the anterior cingulate (ACC) and the posterior cingulate (PCC) to the whole brain were analyzed using correlation analyses based on regions of interest (ROI) identified by the fractional amplitude of low-frequency fluctuation (fALFF). Independent Component Analysis (ICA) was used to identify the resting-state sub-networks.

Results

fALFF analysis found that regional activity was increased in the ACC and decreased in the PCC in OCD patients when compared to controls. FC of the ACC and the PCC also showed different patterns. The ACC and the PCC were found to belong to different resting-state sub-networks in ICA analysis and showed abnormal FC, as well as contrasting correlations with the severity of OCD symptoms.

Conclusions

Activity of the ACC and the PCC were increased and decreased, respectively, in the medication-naïve OCD patients compared to controls. Different patterns in FC were also found between the ACC and the PCC with respect to these two groups. These findings implied that the cardinal feature of OCD, the loss of control, may be attributed to abnormal activities and FC of the ACC and the PCC.  相似文献   

16.

Background

The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.

Methods

Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.

Results

Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.

Conclusions

Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.  相似文献   

17.

Background

Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL) and premotor cortex (PM), and their activation seems to take place in parallel.

Methodology

The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS) during planning of reaching movements under visual guidance.

Principal Findings

A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation.

Conclusions

This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.  相似文献   

18.

Background

In the past twenty years, codeine-containing cough syrups (CCS) was recognized as a new type of addictive drugs. However, the exact neurobiologic mechanisms underlying CCS-dependence are still ill-defined. The aims of this study are to identify CCS-related modulations of neural activity during the resting-state in CCS-dependent individuals and to investigate whether these changes of neural activity can be related to duration of CCS use, the first age of CCS use and impulse control deficits in CCS-dependent individuals. We also want to observe the impact of gray matter deficits on these functional results.

Methodology/Principal Findings

Thirty CCS-dependent individuals and 30 control subjects participated. Resting-state functional MRI was performed by using gradient-echo echo-planar imaging sequence. Regional homogeneity (ReHo) was calculated by using REST software. Voxel-based analysis of the ReHo maps between controls and CCS-dependent groups was performed using two-sample t tests (p<0.05, corrected for multiple comparisons). The Barratt Impulsiveness Scale 11 (BIS.11) was surveyed to assess participants'' impulsivity trait soon after MR examination. Abnormal clusters revealed by group comparison were extracted and correlated with impulsivity, duration of CCS use, and age of first CCS use. ReHo was diminished in the bilateral medial orbitofrontal cortex (mOFC) and left dorsal striatum in CCS-dependent individuals. There were negative correlations between mean ReHo in the bilateral medial OFC, left dorsal striatum and duration of CCS use, BIS.11 total scores, and the subscale of attentional impulsivity in CCS-dependent individuals. There was a significantly positive correlation between mean ReHo in the left dorsal striatum and age of first CCS use in CCS-dependent individuals. Importantly, these results still remain significant after statistically controlling for the regional gray matter deficits.

Conclusion

Resting-state abnormalities in CCS-dependent individuals revealed in the present study may further improve our understanding about the neural substrates of impulse control dysfunction in CCS-dependent individuals.  相似文献   

19.

Background

Huntington''s disease (HD) is caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein. A number of differentially-expressed protein molecules have been identified in striatum of HD animal models. Here we examined if the expression changes could be visualized in the peripheral leukocytes of HD patients and pre-symptomatic HD (PreHD) carriers.

Methods and findings

The expression levels of 17 candidate genes that differentially expressed in striatum between transgenic HD and wild-type mice in literature were measured in the peripheral leukocytes of 4 PreHD carriers, 16 HD patients and 20 healthy controls. Four genes majorly involved in metabolism and oxidative stress response, including AHCY1, ACO2, OXCT1 and CAP1, demonstrated consistent downregulation in peripheral leukocytes of both PreHD carriers and HD patients, while UCP2 was only down-regulated in HD patients.

Conclusion

These results provide potential peripheral biomarkers to indicate disease onset in preclinical stage, and to monitor the efficacy of early treatment. Further studies of a large series of preHD carriers and symptomatic HD patients will be warranted to verify the findings and examine if these markers correlate with clinical features.  相似文献   

20.

Background

Gain-of function or dominant-negative mutations in the voltage-gated potassium channel KCNC3 (Kv3.3) were recently identified as a cause of autosomal dominant spinocerebellar ataxia. Our objective was to describe the frequency of mutations associated with KCNC3 in a large cohort of index patients with sporadic or familial ataxia presenting to three US ataxia clinics at academic medical centers.

Methodology

DNA sequence analysis of the coding region of the KCNC3 gene was performed in 327 index cases with ataxia. Analysis of channel function was performed by expression of DNA variants in Xenopus oocytes.

Principal Findings

Sequence analysis revealed two non-synonymous substitutions in exon 2 and five intronic changes, which were not predicted to alter splicing. We identified another pedigree with the p.Arg423His mutation in the highly conserved S4 domain of this channel. This family had an early-onset of disease and associated seizures in one individual. The second coding change, p.Gly263Asp, subtly altered biophysical properties of the channel, but was unlikely to be disease-associated as it occurred in an individual with an expansion of the CAG repeat in the CACNA1A calcium channel.

Conclusions

Mutations in KCNC3 are a rare cause of spinocerebellar ataxia with a frequency of less than 1%. The p.Arg423His mutation is recurrent in different populations and associated with early onset. In contrast to previous p.Arg423His mutation carriers, we now observed seizures and mild mental retardation in one individual. This study confirms the wide phenotypic spectrum in SCA13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号