首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gut hormone peptide YY(3-36)-amide [PYY(3-36)-NH2] is significantly more potent than PYY(1-36)-NH2 in reducing food intake in rats and humans. Other Gly-extended and Ser13-phosphorylated PYY forms have been detected or predicted based upon known cellular processes of PYY synthesis and modification. Here we compared the effects of 3-h IV infusion of PYY(1-36)-NH2, PYY(3-36)-NH2, PYY(1-36)-Gly-OH, PYY(3-36)-Gly-OH, Ser13(PO3)-PYY(1-36)-NH2, Ser13(PO3)-PYY(3-36)-NH2, Ser13(PO3)-PYY(1-36)-Gly-OH, and Ser13(PO3)-PYY(3-36)-Gly-OH during the early dark period on food intake in freely feeding rats. PYY(3-36)-NH2 and Ser13(PO3)-PYY(3-36)-NH2 reduced food intake similarly at 50 pmol/kg/min, while only PYY(3-36)-NH2 reduced food intake at 15 pmol/kg/min. PYY(1-36)-NH2 and Ser13(PO3)-PYY(1-36)-NH2 reduced food intake similarly at 50 and 150 pmol/kg/min. In contrast, PYY(1-36)-Gly-OH, PYY(3-36)-Gly-OH, Ser13(PO3)-PYY(3-36)-Gly-OH, and Ser13(PO3)-PYY(1-36)-Gly-OH had no effect on food intake at doses of 50 or 150 pmol/kg/min. Taken together, these results indicate that (i) PYY(3-36)-NH2 is significantly more potent than PYY(1-36)-NH2 in reducing food intake, (ii) Gly-extended forms of PYY are significantly less potent than non-extended forms, and (iii) Ser13-phosphorylation of PYY(3-36)-NH2 decreases the anorexigenic potency PYY(3-36)-NH2, but not PYY(1-36)-NH2. Thus, PYY(3-36)-NH2 appears to be the most potent PYY form for reducing food intake in rats.  相似文献   

2.
BackgroundProlonged high fat feeding negatively impacts pancreatic and intestinal morphology. In this regard, direct effects of PYY(3–36) on intestinal cell and pancreatic islet morphometry are yet to be fully explored in the setting of obesity.MethodsWe examined the influence of 21-days twice daily treatment with PYY(3–36) on these parameters in mice fed a high fat diet (HFD).ResultsPYY(3–36) treatment decreased food intake, body weight and circulating glucose in HFD mice. In terms of intestinal morphology, crypt depth was restored to control levels by PYY(3–36), with an additional enlargement of villi length. PYY(3–36) also reversed HFD-induced decreases of ileal PYY, and especially GLP-1, content. HFD increased numbers of PYY and GIP positive ileal cells, with PYY(3–36) fully reversing the effect on PYY cell detection. There were no obvious differences in the overall number of GLP-1 positive ileal cells in all mice, barring PYY(3–36) marginally decreasing GLP-1 villi cell immunoreactivity. Within pancreatic islets, PYY(3–36) significantly decreased alpha-cell area, whilst islet, beta-, PYY- and delta-cell areas remained unchanged. However, PYY(3–36) increased the percentage of beta-cells while also reducing percentage alpha-cell area. This was related to PYY(3-36)-induced reductions of beta-cell proliferation and apoptosis frequencies. Co-localisation of islet PYY with glucagon or somatostatin was elevated by PYY(3–36), with GLP-1/glucagon co-visualisation increased when compared to lean controls.ConclusionPYY(3–36) exerts protective effects on pancreatic and intestinal morphology in HFD mice linked to elevated ileal GLP-1 content.General significanceThese observations highlight mechanisms linked to the metabolic and weight reducing benefits of PYY(3–36).  相似文献   

3.
The gastrointestinal peptide, peptide YY3–36 (PYY3–36) and its shorter peptide analogues have been reported to reduce appetite by activating the neuropeptide Y2 receptor (Y2R), which is associated with obesity and other metabolic diseases. A 14-amino acid PYY analogue, Ac-[d-Pro24,Cha27,28,36,Aib31]PYY(23–36) (3), showed high binding affinity and agonist activity for the Y2R, similar to that of PYY3–36, but had weak anorectic activity upon continuous administration in lean mice. Three amino acid substitutions [Pya(4)26, Aib28, Lys30], which contributed to the decreased hydrophobicity of 3, efficiently increased its anorectic activity. The compound containing these three amino acids, Ac-[d-Pro24,Pya(4)26,Cha27,36,Aib28,31,Lys30]PYY(23–36) (22), exerted more potent and durable food intake suppression than that by PYY3–36 in lean mice, as well as excellent Y2R agonist activity (EC50: 0.20 nM) and good subcutaneous bioavailability (66.6%). The 11-day continuous administration of 22 at 1 mg/kg/day successfully produced antiobese and antidiabetic effects, with more than 20% body weight loss in obese and Type 2 diabetes ob/ob model mice.  相似文献   

4.
目的:探究YY肽(PYY)对雄性Wistar大鼠的摄食、胃运动和能量代谢的影响及潜在机制。方法:采用免疫组织化学实验方法观察大鼠下丘脑弓状核(ARC)中Y2受体的表达;通过ARC微量注射PYY,观察其对下丘脑中编码摄食相关代谢激素的m RNA表达以及ARC中PYY反应性神经元的放电频率、食物摄入量及水摄入量、氧气消耗(VO_2)、CO_2产生(VCO_2)及能量代谢的影响。结果:免疫组化结果显示大鼠ARC内存在Y2受体;大鼠ARC注射PYY能够兴奋PYY反应性神经元,上调可卡因-苯丙胺调节转录肽(CART)及促肾上腺皮质释放激素(CRH)等抑食肽m RNA的表达,下调神经肽Y(NPY)及下丘脑泌素(HCRT)等促食肽m RNA的表达;且抑制大鼠食物摄入量,并参与调控大鼠呼吸、能量代谢及胃运动的改变。结论:ARC微量注射PYY可减少食物摄入并调节全身能量平衡,PYY可能是一种新型代谢肽。  相似文献   

5.
Evolutionary relationships between neuroendocrine peptides are often difficult to resolve across divergent phyla due to independent duplication events in different lineages. Thanks to peptide purification and molecular cloning in many different species, the situation is beginning to clear for the neuropeptide Y (NPY) family, which also includes peptide YY (PYY), the tetrapod pancreatic polypeptide (PP) and the fish pancreatic peptide Y (PY). It has long been assumed that the first duplication to occur in vertebrate evolution generated NPY and PYY, as both of these are found in all gnathostomes as well as lamprey. Evidence from other gene families show that this duplication was probably a chromosome duplication event. The origin of a second PYY peptide found in lamprey remains to be explained. Our recent cloning of NPY, PYY and PY in the sea bass proves that fish PY is a separate gene product. We favour the hypothesis that PY is a duplicate of the PYY gene and that it may have occurred late in fish evolution, as PY has so far only been found in acanthomorph fishes. Thus, this duplication seems to be independent of the one that generate PP from PYY in tetrapods, although both tetrapod PP and fish PY are expressed in the pancreas. Studies in the sea bass and other fish show that PY, in contrast to PP, is expressed in the nervous system. We review the literature on the distribution and functional aspects of the various NPY-family peptides in vertebrates.  相似文献   

6.
Peptide YY 3–36-amide (PYY3–36) is a peptide hormone, which is known to decrease appetite and food-intake by activation of the Y2 receptor. The current studies were designed to identify the metabolites of PYY3–36 in mini-pig and rhesus monkey. Plasma samples were analyzed by high resolution LC–MS (and MS/MS) in order to unambiguously identify the metabolites of PYY3–36. In summary, the metabolism of PYY3–36 was similar in mini-pig and rhesus monkey. Several metabolites were identified and PYY3–34 was identified at the highest levels in plasma. In addition, mini-pigs were also dosed with PYY1–36-amide, PYY3–35, PYY3–34 and [N-methyl 34Q]-PYY3–36-amide in order to investigate the mechanisms by which PYY was metabolized. PYY3–35 was rapidly converted to PYY3–34 whereas dosing of PYY3–34 to mini-pigs only showed circulating degradation products at low levels, i.e., PYY3–34 was metabolically more stable than PYY3–36 and PYY3–35. [N-methyl 34Q]-PYY3–36-amide was hypothesized to be stable toward cleavage between 34Q and 35R and after i.v. administration to mini-pigs, one major cleavage product was identified as [N-methyl 34Q]-PYY3–35. Overall, this showed that cleavage between 35R and 36Y was possible as well as between 34Q and 35R (as shown for PYY3–35), which indicated that metabolism of PYY3–36 to PYY3–34 may be a two-step process. PYY1–36 was also dosed to mini-pigs, which showed that PYY1–36 was metabolized in the C-terminal as PYY3–36. The overall degradation pattern of PYY1–36 was more complex due to the simultaneous enzymatic degradation in the N-terminal to form PYY2–34/36 and PYY3–34/36. In vitro incubations with heparin stabilized plasma showed that PYY3–36 was degraded with a half-life of 175 min, whereas incubations with PYY3–35 (half-life of 6 min) showed a rapid formation of PYY3–34. In conclusion, the present studies showed that PYY3–36 underwent enzymatic degradation in the C-terminal part and that the major circulating metabolite was PYY3–34. Furthermore, it may be a sequential two-step process leading to the formation of PYY3–35 and subsequently the metabolically more stable PYY3–34.  相似文献   

7.
The prevalence of obesity is increasing with an alarming rate worldwide and there is a need for efficacious satiety drugs. PYY3–36 has been shown to play a role in hypothalamic appetite regulation and novel analogs targeting the Y2 receptor have potential as drugs for the treatment of obesity. We have designed a series of novel PYY3–36 isoforms, by first adding the dipeptide Ile–Lys N‐terminal to the Nα of Ser‐13 in PYY13–36 and then anchoring the N‐terminal segment, e.g. PYY3–12, to the new Lys Nε‐amine. We hypothesized that such modifications would alter the folding of PYY, due to changes in the turn motif, which could change the binding mode to the Y receptor sub‐types and possibly also alter metabolic stability. In structure‐affinity/activity relationship experiments, one series of PYY isoforms displayed equipotency towards the Y receptors. However, an increased Y2 receptor potency for the second series of PYY isoforms resulted in enhanced Y receptor selectivity compared to PYY3–36. Additionally, acute as well as chronic mice studies showed body‐weight‐lowering effects for one of the PYY isoforms, which was also reflected in a reduction of circulating leptin levels. Interestingly, while the stability and pharmacokinetic profile of PYY3–36 and the N‐terminally modified PYY3–36 analogue were identical, only mice treated with the branched analogue showed marked increases in adiponectin levels as well as reductions in non‐esterified free fatty acids and triglycerides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
It has been hypothesized that amphipathic peptides might bind to membranes prior to activating their cognate receptors, but this has proven difficult to test. The peptide hormone PYY3‐36 is believed to perform its appetite‐suppressing actions through binding to hypothalamic Y2 receptors. It has been proposed that PYY3‐36 via its amphipathic α‐helix binds to the plasma membrane prior to receptor docking. Here, our aim was to study the implication of this hypothesis using new analogs of PYY3‐36. We first studied membrane binding of PYY3‐36. Next, we designed a series of PYY3‐36 analogs to increase membrane‐binding affinity by substituting the N‐terminal segment with a de novo designed α‐helical, amphipathic sequence. These 2‐helix variants of PYY3‐36 were assembled by solid‐phase peptide synthesis. Pharmacological studies demonstrated that even though the native peptide sequence was radically changed, highly active Y2 receptor agonists were generated. A potent analog, with a Kd of 4 nM for membranes, was structurally characterized by NMR in the membrane‐bound state, which clearly showed that it formed the expected 2‐helix. The topology of the peptide–micelle association was studied by paramagnetic relaxation enhancement using a spin label, which confirmed that the hydrophobic residues bound to the membrane. Our studies further support the hypothesis that PYY3‐36 associates with the membrane and indicate that this can be used in the design of novel molecules with high receptor binding potency. These observations are likely to be generally important for peptide hormones and biopharmaceutical drugs derived from them. This new 2‐helix variant of PYY3‐36 will be useful as a tool compound for studying peptide–membrane interactions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Structure–activity relationship studies of the cyclopentapeptide CXCR4 antagonists (cyclo(-l-/d-Arg1-Arg2-2-Nal3-Gly4-d-Tyr5-)) suggest that the l-/d-Arg1-Arg2-2-Nal3 tripeptide sequence contained within these cyclopentapeptides serves as a recognition motif for peptidic CXCR4 antagonists. Starting by dissecting the cyclopentapeptide structure and reintroducing cyclic constraints in a stepwise manner, we here report a novel class of scaffold-based tripeptidomimetic CXCR4 antagonists based on the d-Arg-Arg-2-Nal motif. Biological testing of the prototype compounds showed that they represent new peptidomimetic hits; importantly, the modular nature of the scaffold provides an interesting starting point for future ligand optimization.  相似文献   

10.
《Cytokine》2014,69(2):86-93
BackgroundBlocking the activity of IL-6 can inhibit autoimmune diseases such as rheumatoid arthritis and Crohn’s disease.ObjectiveWe examined whether an antibody against IL-6, tocilizumab (TCZ) (Actemra®), used clinically in rheumatoid arthritis (RA) would have similar anti-inflammatory effects in EAE after oral administration.Design/methodB6 mice were immunized with MOG peptide 35–55 and gavaged with control saline or TCZ during ongoing disease. Splenocytes, CD4+ T cells or macrophages/monocyte lineage cells (CD11b+) from control fed or TCZ fed mice were adoptively transferred into active MOG peptide 35–55 immunized recipient mice during ongoing disease. Actively fed and recipient mice were examined for disease inhibition, inflammation, and cytokine responses.ResultsIngested (oral) TCZ inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from TCZ fed donors protected against actively induced disease and decreased inflammation. There was a decrease in IL-6 in actively treated spleen, decrease in TNF-α, Th1-like cytokine IL-12 and increase in Th2-like cytokine IL-10 in active fed and adoptively treated recipients.ConclusionsIngested (orally administered) TCZ can inhibit disease, CNS inflammation, decrease pro-inflammatory Th1-like cytokines and increase Th2-like anti-inflammatory cytokines.  相似文献   

11.
BackgroundAcute lymphoblastic leukemia (ALL) is still incurable hematologic neoplasia in an important percentage of patients. Therefore, new therapeutic approaches need to be developed.MethodsTo evaluate the cellular effect of cell-penetrating peptides (C-PP) on leukemia cells, Jurkat cells -a model of ALL were exposed to increasing concentration (50–500 μM) Aβ25–35, R7-G-Aβ25-35 and Aβ25–35-G-R7 peptide for 24 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry (FC), and fluorescent microscopy (FM) analysis were used to assess metabolic viability, cell cycle and proliferation, mitochondria functionality, oxidative stress, and cell death markers.ResultsWe report for the first time that the R7-G-Aβ25-35, but not Aβ25–35 peptide, induced selective cell death in Jurkat cells more efficiently than the Aβ25–35-G-R7 peptide. Indeed, R7-G-Aβ25-35 (200 μM) altered the metabolic activity (?25%), arrested the cell cycle in the G2/M-phase (15%), and induced a significant reduction of cellular proliferation (i.e., ?74% reduction of Ki-67 nuclei reactivity). Moreover, R7-G-Aβ25-35 induced the dissipation of mitochondrial membrane potential (ΔΨm, 51%) and produced an important amount of reactive oxygen species (ROS, 75% at 8 h) in Jurkat cells. The exposure of cells to antioxidant/cytoprotectant N-acetylcysteine (NAC) did not prevent R7-G-Aβ25-35 from a loss of ΔΨm in Jurkat cells. The peptide was also unable to activate the executer CASPASE-3, thereby preserving the integrity of the cellular DNA corroborated by the fact that the caspase-3 inhibitor NSCI was unable to protect cells from R7-G-Aβ25-35 -induced cell damage. Further analysis showed that the R7-G-Aβ25-35 peptide is specifically localized at the outer mitochondria membrane (OMM) according to colocalization with the protein translocase TOMM20. Additionally, the cytotoxic effect of the poly-R7 peptide resembles the toxic action of the uncoupler FCCP, mitocan oligomycin, and rotenone in Jurkat cells. Importantly, the R7-G-Aβ25-35 peptide was innocuous to menstrual mesenchymal stromal cells (MenSC) –normal non-leukemia proliferative cells.ConclusionOur findings demonstrated that the cationic Aβ peptide possesses specific anti-leukemia activity against Jurkat cells through oxidative stress (OS)- and CASPASE-3-independent mechanism but fast mitochondria depolarization.  相似文献   

12.
13.
The site of action of peripheral peptide YY (PYY)-induced inhibition of vagally stimulated gastric acid secretion was studied using immunoneutralization with PYY antibody in urethan-anesthetized rats. Gastric acid secretion (59+/-7 micromol/90 min) stimulated by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368 (14 pmol/rat) was dose-dependently inhibited by 52%, 69%, and 83% by intravenous infusion of 0.25, 0.5, and 1.0 nmol. kg(-1) x h(-1) PYY, respectively. PYY or PYY(3-36) (2.4 pmol/rat) injected intracisternally also inhibited the acid response to intracisternal RX-77368 by 73% and 80%, respectively. Intravenous pretreatment with PYY antibody (4.5 mg/rat), which shows a 35% cross-reaction with PYY(3-36) by RIA, completely prevented the inhibitory effect of intravenously infused PYY (1 nmol x kg(-1) x h(-1)). When injected intracisternally, the PYY antibody (280 microg/rat) reversed intracisternal PYY (2.4 pmol)- and intravenous PYY (1 nmol x kg(-1) x h(-1))-induced inhibition of acid response to intracisternal RX-77368 by 64% and 93.5%, respectively. These results provide supporting evidence that peripheral PYY inhibits central vagal stimulation of gastric acid secretion through an action in the brain.  相似文献   

14.
The stability of a discrete body size dimorphism of sexually mature river lamprey Lampetra fluviatilis from the River Endrick, Scotland, was examined over a 21 year period. Stable isotope analysis was used to test the hypothesis that the two size forms comprise individuals with differing migration and parasitic foraging strategies. Maturing river lamprey and the brook lamprey Lampetra planeri were trapped over 3 months each year in the periods 1983–1984 and 2004–2005. Brook lamprey catches and catches of both species combined showed no significant trend in catch rate with time. The catch rate of small body size river lamprey declined between 1983–1984 and 2004–2005 (although the difference did not reach statistical significance; P = 0·055). In contrast, there was a significant increase in the catch rate of the large body size river lamprey and as a consequence, a significant change in the relative proportion of each of the two river lamprey morphs over the study period. Analysis of the stable isotopes of C and N in muscle tissue showed that brook lamprey tissue derived its carbon from a freshwater source and had a δ13C more consistent with that of the River Endrick than with Loch Lomond. δ15N values for this species showed it to be feeding at the base of the food chain, consistent with filter feeding as an ammocoete. The large body size and the small body size river lamprey adults differed substantially in their δ13C values, with the small body size δ13C signature indicative of a freshwater carbon source and the large body size morph of a marine source. The small body size morph had a δ13C signature that was consistent with that of Loch Lomond powan Coregonus lavaretus suggesting that they share a common carbon source. The large body size morph was clearly feeding at a higher trophic level than the small body size morph. A single small body size river lamprey individual with typical morphology for that group, however, had C and N signatures that clustered with those of the large body size morphs. This individual had either migrated to sea to forage, as is typical for the species, or had been feeding on an anadromous fish with a strong marine C signature in fresh water. It is concluded that the body size dimorphism is indicative of a differential migration and foraging strategy in the parasitic phase of the life cycle of river lamprey at this site.  相似文献   

15.
We compared the effects of the two molecular forms of the brain-gut peptide YY (PYY), PYY(1-36) and PYY(3-36), on gastric emptying. Unanesthetized rats received 20-min intravenous infusions of rat PYY(1-36) (0, 1.7, 5, 17, 50, 100, 170 pmol x kg(-1) x min(-1)) and rat PYY(3-36) (0, 0.5, 1.7, 5, 17, 50, 100, 170 pmol x kg(-1) x min(-1)), either alone or combined, and gastric emptying of saline was measured during the last 10 min of infusion. For comparison, human PYY(3-36) was administered at 0, 17, and 50 pmol x kg(-1) x min(-1). Gastric emptying was decreased by 11, 24, 26 and 38% in response to 17, 50, 100, and 170 pmol x kg(-1) x min(-1) of rat PYY(1-36); by 10, 26, 41, 53, and 57% in response to 5, 17, 50, 100, and 170 pmol x kg(-1) x min(-1) of rat PYY(3-36); and by 35 and 53% in response to 17 and 50 pmol x kg(-1) x min(-1) of human PYY(3-36), respectively. Estimated ED50s were 470 and 37 pmol x kg(-1) x min(-1) for rat PYY(1-36) and PYY(3-36), respectively. In general, within an experiment, coadministration of PYY(1-36) and PYY(3-36) inhibited gastric emptying by an amount that was comparable to that produced when either peptide was given alone. We conclude that 1) intravenous infusion of PYY(1-36) and PYY(3-36) each produces a dose-dependent inhibition of gastric emptying in rats, 2) PYY(3-36) is an order of magnitude more potent than PYY(1-36) in inhibiting gastric emptying, 3) human PYY(3-36) and rat PYY(3-36) inhibit gastric emptying similarly, and 4) PYY(1-36) and PYY(3-36) do not appear to interact in an additive or synergistic manner to inhibit gastric emptying.  相似文献   

16.
The goal of this study was to understand the mechanisms of greater weight loss by gastric bypass (GBP) compared to gastric banding (GB) surgery. Obese weight‐ and age‐matched subjects were studied before (T0), after a 12 kg weight loss (T1) by GBP (n = 11) or GB (n = 9), and at 1 year after surgery (T2). peptide YY3–36 (PYY3–36), ghrelin, glucagon‐like peptide‐1 (GLP‐1), leptin, and amylin were measured after an oral glucose challenge. At T1, glucose‐stimulated GLP‐1 and PYY levels increased significantly after GBP but not GB. Ghrelin levels did not change significantly after either surgery. In spite of equivalent weight loss, leptin and amylin decreased after GBP, but not after GB. At T2, weight loss was greater after GBP than GB (P = 0.003). GLP‐1, PYY, and amylin levels did not significantly change from T1 to T2; leptin levels continued to decrease after GBP, but not after GB at T2. Surprisingly, ghrelin area under the curve (AUC) increased 1 year after GBP (P = 0.03). These data show that, at equivalent weight loss, favorable GLP‐1 and PYY changes occur after GBP, but not GB, and could explain the difference in weight loss at 1 year. Mechanisms other than weight loss may explain changes of leptin and amylin after GBP.  相似文献   

17.
Neuropeptide Y (NPY) is a 36-amino-acid peptide that is widely and abundantly expressed in the central nervous system of all vertebrates investigated. Related peptides have been found in various vertebrate groups: peptide YY (PYY) is present in gut endocrine cells of many species and pancreatic polypeptide (PP) is made in the pancreas of all tetrapods. In addition, a fish pancreatic peptide called PY has been reported in three species of fishes. The evolutionary relationships of fish PY have been unclear and it has been proposed to be the orthologue (species homologue) of each of the three tetrapod peptides. We demonstrate here with molecular cloning techniques that the sea bass (Dicentrarchus labrax), an acanthomorph fish, has orthologues of both NPY and PYY as well as a separate PY peptide. Sequence comparisons suggest that PY arose as a copy of the PYY gene, presumably in a duplication event separate from the one that generated PP from PYY in tetrapods. PY sequences from four species of fish indicate that, similar to PP, PY evolves much more rapidly than NPY and PYY. The physiological role of PY is unknown, but we demonstrate here that sea bass PY, like NPY and PYY but in contrast to the tetrapod PP, is expressed in brain.  相似文献   

18.
Peptide tyrosine-tyrosine (PYY) has been isolated from the intestines of two species of reptile, the desert tortoise Gopherus agassizii (Testudines) and the Burmese python Python molurus (Squamata), from the primitive Actinopterygian fish, the bichir Polypterus senegalis (Polypteriformes) and from two agnathans, the Southern-hemisphere lamprey Geotria australis (Geotriidae) and the holarctic lamprey Lampetra fluviatilis (Petromyzontidae). The primary structure of bichir PYY is identical to the proposed ancestral sequence of gnathostome PYY (YPPKPENPGE10/DAPPEELAKY20/YSALR HYINL30/ITRQRY). Tortoise and python PYY differ by six and seven residues, respectively, from the ancestral sequence consistent with the traditional view that the Testudines represent an earlier divergence from the primitive reptilian stock than the Squamates. The current views of agnathan phylogeny favor the hypothesis that the Southern-hemisphere lampreys and the holarctic lampreys arose from a common ancestral stock but their divergence is of a relatively ancient (pre-Tertiary) origin. The Geotria PYY-related peptide shows only two amino acid substitutions (Pro10-->Gln and Leu22-->Ser) compared with PYY from the holarctic lamprey Petromyzon marinus. This result was unexpected as Petromyzon PYY differs from Lampetra PYY deduced from the nucleotide sequence of a cDNA (S?derberg et al. J. Neurosci. Res. 1994;37:633-640) by 10 residues. However, a re-examination of an extract of Lampetra intestine revealed the presence of a PYY that differed in primary structure from Petromyzon PYY by only one amino acid residue (Pro10-->Ser). This result suggests that the structure of PYY has been strongly conserved during the evolution of Agnatha and that at least two genes encoding PYY-related peptides are expressed in Lampetra tissues.  相似文献   

19.
Background & aimChanges in eating behavior occur in the elderly due to oral and swallowing dysfunctions. We aimed to clarify the difference between basal meal patterns of young and aged mice in relation to appetite regulating hormones.MethodsThirty two of young (7-week-old) and aged (23–25-month-old) C57BL/6 male mice were acclimated to a single housing and then transferred to a highly sensitive automated feeding monitoring device. Feeding behavior was monitored from the onset of the dark phase after habituation to the device. Plasma peptide YY (PYY) levels were assessed under the several feeding status or after treatment of PYY. PYY and its receptor (NPY Y2 receptor, Y2R) antagonist were intraperitoneally administered 30 min before the monitoring.ResultsAlthough the basal 24-h meal amounts did not differ by age, the total meal time and frequency of minimum feeding activity (bout) were significantly increased and the average bout size and time per bout were significantly decreased in aged mice. PYY dynamics were abnormal and the temporal reduction in food intake by exogenous PYY was more prominent in aged mice than in young mice. PYY administration to young mice induced aged-like meal patterns, and Y2R antagonist administration to aged mice induced young-like meal patterns.ConclusionsAged mice exhibited characteristic meal patterns probably due to PYY metabolism dysfunction and/or enhanced PYY-Y2R signaling, suggesting a novel method for assessing eating difficulties in aged animals and a potential target for the remedy.  相似文献   

20.
In this study we report the localisation of PYY immunoreactivity in intestinal mucosa endocrine (EG) cells containing glucagon-related peptides and also in foetal pancreatic A cells of rat and man. Radioimmunoassay of human foetal pancreatic extracts revealed the presence of PYY immunoreactivity, the concentration of which declined with age (from 65.42 pmol/g at week 20 to 17.0 pmol at week 40; correlation coefficient = -0.893), in contrast to the amount of glucagon which remained statistically constant throughout the same foetal period. The identity of this PYY immunoreactive material with the original 36 amino acid porcine peptide has been shown by high pressure liquid chromatography (HPLC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号