首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.  相似文献   

2.
We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004).In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks.In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as "Trojan Horses" to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.Download video file.(107M, mov)  相似文献   

3.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

4.
为研究白蚁饵料成型工艺,比较了9种胶黏剂对白蚁纤维素饵料成型效果、耐水性能以及对白蚁取食的影响。结果表明:20%、40%剂量糊精;50%、100%剂量三聚氰胺甲醛树脂,10%、20%、40%田菁胶、卡拉胶、壳聚糖、明胶;10%、50%、100%聚乙烯醇、硅酸钠对微晶纤维素的成型效果较好,经上述剂量胶黏剂处理后,纤维素饵块的邵氏硬度(HD)极显著高于对照。耐水性能试验至第30天时,50%聚乙烯醇、100%聚乙烯醇、100%三聚氰胺甲醛树脂处理的纤维素饵块的溃散程度指数分别为1.33、1.00、2.00,其余饵块的溃散程度指数均达3级。生测结果显示,在7 d的室内强迫取食试验中,白蚁对50%聚乙烯醇、100%聚乙烯醇、100%三聚氰胺甲醛树脂处理的块状纤维素饵料的取食率均极显著低于对照,说明饵块中添加的上述胶黏剂对白蚁的取食具有一定的影响。综上,50%聚乙烯醇、100%聚乙烯醇、100%三聚氰胺甲醛树脂适用于白蚁纤维素饵料成型,但若想获得白蚁喜食的饵块仍需对配方做进一步的优化。  相似文献   

5.
The major gut microflora colonizing the hind gut of a higher termite,Odontotermes obesus, included morphologically diverse bacteria, both coccoid and rod-shaped, along with spirochaetes, pseudomonads and actinomycetes. Flagellated protozoa were totally absent. When the gut extract was inoculated on plates containing carboxymethyl cellulose or cellobiose, higher numbers of bacteria grew than on plates without cellulosic sources. The gut homogenate exhibited strong hydrolytic activity when carboxymethyl cellulose,p-nitrophenyl--d-glucoside or xylan were used as substrate, indicating the role of gut microbiota in the process of cellulose and hemicellulose digestion. Activities were highest in the hind gut, and the paunch was probably the major site of polysaccharide digestion in this higher termite.In vitro cultivation of some of the isolates revealed both cellulase and xylanase activities. To our knowledge, this is the first report on ultrastructural studies of the higher termiteOdontotermes obesus.  相似文献   

6.
Abstract.  Throughout the history of studies on cellulose digestion in termites, carboxymethyl-cellulose has been preferably used as a substrate for measuring cellulase activity in termites due to its high solubility. However, carboxymethyl-cellulose degradation is not directly related to digestibility of naturally occurring cellulose because many noncellulolytic organisms can also hydrolyse carboxymethyl-cellulose. To address this issue, a comparative study of microcrystalline cellulose digestion is performed in diverse xylophagous termites, using gut homogenates. For those termites harbouring gut flagellates , the majority of crystalline cellulose appears to be digested in the hindgut, both in the supernatant and the pellet. For Nasutitermes takasagoensis , a termite free of gut flagellates, crystalline cellulose is degraded primarily in the midgut supernatant, and partially in the pellet of the hindgut. The fungus-growing termite Odontotermes formosanus , which also does not possess intestinal flagellates, shows only a trace of crystalline cellulose hydrolysis throughout the gut. Comparison of levels of activity against crystalline cellulose with previously reported levels of activity against carboxymethyl-cellulose in the gut of each termite reveals significant differences between these activities. The results suggest that the hindgut flagellates produce commonly cellobiohydrolases in addition to endo-β-1,4-glucanases, which presumably act synergistically to digest cellulose. Preliminary evidence for the involvement of bacteria in the cellulose digestion of N. takasagoensis is also found.  相似文献   

7.
A novel spirochete strain, SPN1, was isolated from the hindgut contents of the termite Neotermes castaneus. The highest similarities (about 90%) of the strain SPN1 16S rRNA gene sequence are with spirochetes belonging to the genus Spirochaeta, and thus, the isolate could not be assigned to the so-called termite clusters of the treponemes or to a known species of the genus Spirochaeta. Therefore, it represents a novel species, which was named Spirochaeta coccoides. In contrast to all other known validly described spirochete species, strain SPN1 shows a coccoid morphology and is immotile. The isolated strain is obligately anaerobic and ferments different mono-, di-, and oligosaccharides by forming formate, acetate, and ethanol as the main fermentation end products. Furthermore, strain SPN1 is able to grow anaerobically with yeast extract as the sole carbon and energy source. The fastest growth was obtained at 30 degrees C, the temperature at which the termites were also grown. The cells possess different enzymatic activities that are involved in the degradation of lignocellulose in the termite hindgut, such as beta-D-glucosidase, alpha-L-arabinosidase, and beta-D-xylosidase. Therefore, they may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut.  相似文献   

8.
Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.  相似文献   

9.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an aggressive, invasive termite species that has caused billions of dollars of damage across the United States for the past 50 years. Termites depend on intestinal microorganisms for cellulose digestion. Symbiotic microorganisms in the termite gut play key physiological functions such as cellulose and hemicellulose digestion, acetogenesis, hydrogenesis, methanogenesis, sulfate reduction, and nitrogen fixation. Additionally, intestinal microbes create suitable conditions for symbiotic protozoans through the production of nutrients and the maintenance of the pH and the anaerobic conditions in the gut. Although extensive research has been done on the symbiotic relationship of these termites and the microbes found in its gut, there is little information available on the role of facultative anaerobes in the gut. We isolated four enteric bacteria from the hindgut of Formosan subterranean termite, C. formosanus. All isolates were facultative anaerobes and G-. The isolates were identified as Serratia marcescens, Enterobacter aerogens, Enterobacter cloacae, and Citrobacter farmeri by using BIOLOG assay and fatty acid methyl ester analysis (FAME). Each isolate was characterized using sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and biochemical study. This is the first report on the presence of facultative microbes in termite gut. Results of this first study on facultative microbes in the termite gut indicate that the role of facultative organisms in the Formosan termite gut may be to scavenge oxygen and create anaerobic conditions for the anaerobic microorganisms, which are essential for digestion of cellulose consumed by the termite.  相似文献   

10.
The demand for the usage of natural renewable polymeric material is increasing in order to satisfy the future needs for energy and chemical precursors. Important steps in the hydrolysis of polymeric material and bioconversion can be performed by microorganisms. Over about 150 million years, termites have optimized their intestinal polysaccharide-degrading symbiosis. In the ecosystem of the “termite gut,” polysaccharides are degraded from lignocellulose, such as cellulose and hemicelluloses, in 1 day, while lignin is only weakly attacked. The understanding of the principles of cellulose degradation in this natural polymer-degrading ecosystem could be helpful for the improvement of the biotechnological hydrolysis and conversion of cellulose, e.g., in the case of biogas production from natural renewable plant material in biogas plants. This review focuses on the present knowledge of the cellulose degradation in the termite gut.  相似文献   

11.
The termite is a good model of symbiosis between microbes and hosts and possesses an effective cellulose digestive system. Oxygen-tolerant bacteria, such as Dyella sp., Chryseobacterium sp., and Bacillus sp., were isolated from Reticulitermes speratus gut. Notably, the endo-β-1,4-glucanase (EG) activity of all 16 strains of isolated bacteria was low. Due to the combined activity of EG from the termites and their symbiotic protozoa, the bacteria might not be compelled to express EG. This observation demonstrates how well intestinal bacteria have assimilated themselves into the efficient cellulose digestive systems of termites.  相似文献   

12.
Using a quarterly (3-mo) monitoring and bait-replenishment interval, 122 subterranean termite colonies throughout the United States were baited with a refined cellulose bait matrix containing 0.5% noviflumuron. All colonies were eliminated in less than 1 yr after initiation of baiting as determined by long-term monitoring and genetic markers. Sixty-three percent of the colonies were eliminated during the first quarter after the initiation of baiting and 77% of colonies were eliminated after consuming two bait tubes or less. This suggests that a single baiting cycle and bait installed in response to a single active monitoring device were sufficient to eliminate the majority of colonies. Although termites temporarily abandoned stations after depleting bait, workers resumed feeding when baits were replenished. Colonies that consumed large amounts of bait before elimination foraged into multiple stations, thus allowing adequate amounts of bait to sustain feeding. The time to eliminate termite colonies with bait replenished quarterly was similar to that previously reported for laminated cellulose bait replenished monthly. Our data support the conclusion that extending the bait replenishment interval from monthly to quarterly for bait tubes with refined cellulose containing 0.5% noviflumuron did not adversely impact colony elimination.  相似文献   

13.
长期以来,白蚁对木质纤维素的降解能力令人惊叹,毫无疑问,其在全球碳循环中扮演着一个十分重要的角色。这一强大功能的实现极大地依赖于一种特别的肠道"消化液(digestome)",它的构成不仅包括了来自白蚁自身产生的木质纤维素降解酶系统,还来源于独特与多样的肠道共生微生物的贡献(包括了古细菌、细菌、酵母以及其他真核生物),它们的协同作用能有效地将木质纤维素生物质高效转化为乙酸、甲烷、二氧化碳、氢气等物质。然而,到目前为止,我们对这类昆虫的独特肠道生物转化系统的认识还很不深入,特别是针对肠道内的那些各类共生微生物菌群的功能、白蚁与共生微生物间的相互关系、以及潜在的科学与应用价值还无法给予明确的科学解释,更不用说针对其肠道中的共生酵母菌群,一类通常被忽略的独特微生物。近20多年来,越来越多的研究证据表明,白蚁肠道共生酵母在与寄主的关系中表现了不可或缺的重要性与独特功能,已被证明广泛分布于不同白蚁及许多其他昆虫的肠道中。随着近20年来越来越多昆虫肠道共生微生物酵母群被发现和鉴定,他们潜在的功能以及与寄主的共生机制被逐步解析,这些研究结果进一步揭示了"隐身"的昆虫肠道酵母类微生物菌群与寄主的营养、关键生物质转化过程中的重要酶系统、转化过程中的关键中间产物的转化与利用、抵御外源性的重要病原物,甚至对白蚁种群繁衍的远缘交配等方面均可能发挥了重要和不可缺少的作用。本文将试图归纳相关研究的最新进展,系统总结与解析白蚁肠道来源共生酵母的重要科学价值及其在不同领域的潜在应用前景。  相似文献   

14.
AIMS: To demonstrate the occurrence of cellulolytic bacteria in the termite Zootermopsis angusticollis. METHODS AND RESULTS: Applying aerobic cultivation conditions we isolated 119 cellulolytic strains from the gut of Z. angusticollis, which were assigned to 23 groups of aerobic, facultatively anaerobic or microaerophilic cellulolytic bacteria. 16S rDNA restriction fragment pattern and partial 16S rDNA sequence analysis, as well as numerical taxonomy, were used for the assignment of the isolates. The Gram-positive bacteria of the actinomycetes branch could be assigned to the order Actinomycetales including the genera Cellulomonas/Oerskovia, Microbacterium and Kocuria. The Gram-positive bacteria from the order Bacillales belonged to the genera Bacillus, Brevibacillus and Paenibacillus. Isolates related to the genera Afipia, Agrobacterium/Rhizobium, Brucella/Ochrobactrum, Pseudomonas and Sphingomonas/Zymomonas from the alpha-proteobacteria and Spirosoma-like from the "Flexibacteriaceae" represented the Gram-negative bacteria. CONCLUSIONS: A cell titre of up to 10(7) cellulolytic bacteria per ml, determined for some isolates, indicated that they may play a role in cellulose digestion in the termite gut in addition to the cellulolytic flagellates and termite's own cellulases. SIGNIFICANCE AND IMPACT OF THE STUDY: The impact of bacteria on cellulose degradation in the termite gut has always been a matter of debate. In the present survey we investigated the aerobic and facultatively anaerobic cellulolytic bacteria in the termite gut.  相似文献   

15.
Amphibian antimicrobial peptides have been known for many decades and several of them have been isolated from anuran species. Dermaseptins are among the most studied antimicrobial peptides and are found in the skin secretion of tree frogs from the Phyllomedusinae subfamily. These peptides exert a lytic action on bacteria, protozoa, yeast, and filamentous fungi at micromolar concentrations, but unlike polylysines, present little hemolytic activity. In this work, two antimicrobial peptides were isolated from the crude skin secretion of Phyllomedusa hypochondrialis and tested against Gram-positive and Gram-negative bacteria, presenting no hemolytic activity at the tested concentrations. One of them was identified with the recently reported peptide PS-7 belonging to the phylloseptin family, and another was a novel peptide, named DPh-1, which was fully purified, sequenced by ‘de novo’ mass spectrometry and grouped into Dermaseptins (DPh-1).  相似文献   

16.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

17.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

18.
Lower termites rely on cellulolytic protozoa to aid in the digestion of their wood-based diet. However, despite the major contribution of protozoa to the lower termite digestive system, few techniques have been developed to monitor shifts in protozoan populations. This study investigated whether quantitative real-time PCR (qRT-PCR) and/or cellulase enzyme assays can be used to monitor changes of cellulolytic protozoan populations in the lower termite, Reticulitermes flavipes (Kollar). Previously developed cellulase primer sets were used to test for changes in cellulase gene expression, while three different cellulase enzyme assays were used to assess changes in cellulase enzyme activity. The results from this study indicate that qRT-PCR is a reliable method to monitor shifts in cellulolytic protozoan populations. Specifically, qRT-PCR can serve as a useful monitoring technique during high-throughput screening of novel termite control agents such as cellulase inhibitors, and help to answer questions relating to whether or not such control agents impact cellulolytic protozoan populations.  相似文献   

19.
Periodic sampling of 43 independent monitors, initially active with Formosan subterranean termite, Coptotermes formosanus Shiraki, or the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae), was conducted to evaluate the effects of cellulose baits containing one of three chitin synthesis inhibitors (CSIs)-diflubenzuron, hexaflumuron, or chlorfluazuron-on termite populations. Diflubenzuron at 0.1% active ingredient (AI, wt:wt) had no noticeable effect on termite populations. Chlorfluazuron (0.25% [AI]) significantly reduced termite populations in approximately 3 yr. Chlorfluazuron used after > 2-yr diflubenzuron treatment significantly reduced termite populations within months. This suggests diflubenzuron exposure increased the termite's sensitivity to chlorfluazuron accelerating population collapse. Hexaflumuron (0.5% [AI]) also reduced termite populations in approximately 2 yr. The process of removing most detectable termite populations from the approximately 160,000-m2 campus of the Southern Regional Research Center, New Orleans, LA, with CSIs baits required approximately 3 yr. Adjustments in the specific bait formulations and application procedures might reduce time to suppression. Establishment of new independent termite populations provides a mechanism to minimize the effects of baits. Remedial control measures around and under structures should be considered when implementing an area wide management strategy.  相似文献   

20.
The efficacy of three chitin synthesis inhibitors, diflubenzuron, hexaflumuron, and chlorfluazuron, incorporated into a novel bait matrix to kill the Formosan subterranean termite, Coptotermes formosanus Shiraki, was evaluated in the laboratory. The bait matrix was significantly preferred by C. formosanus over southern yellow pine wood in a two-choice feeding test. Bait formulations containing 250 ppm of the three chitin synthesis inhibitors were presented to termite nests with 2,500 individuals (80% workers and 20% soldiers) in the presence of alternative food sources consisting of cardboard and southern yellow pine, Pinus taeda L., wood. None of the bait formulations were significantly repellent or feeding deterrent to the termite workers evidenced by the lack of full consumption of alternative food sources. All nests presented with the bait formulations died within 9 wk, whereas the control nests (bait with no chitin synthesis inhibitors) remained alive 6 mo after the end of the study. No significant differences in consumption were observed among the chitin synthesis inhibitor treatments. Importance of this study for the improvement of current bait technology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号