首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many species exist as metapopulations in balance between local population extinction and recolonization, processes that may strongly affect the distribution of neutral genetic diversity within demes and in the metapopulation as a whole. In this paper we use both the infinite-alleles and the infinite-sites models to reframe Slatkin's propagulepool and migrant-pool models in terms of mean within-deme and among-deme genetic diversity; the infinite-sites model is particularly relevant to DNA sequence data. Population turnover causes a major reduction in neutral genetic diversity within demes, πS, and in the metapopulation as a whole, πt. This effect is particularly strong for propagulepool colonization, in which colonists are drawn from a single extant deme. Because metapopulation dynamics affect both within-deme and total metapopulation diversity similarly, comparisons between species with different ecologies on the basis of ratios such as FST are difficult to interpret and absolute measures of divergence between populations should be used as well. Although the value of FST in a metapopulation with local extinction depends strongly on the mode of colonization, this has almost no effect on the numerator of the FST ratio, πt – πS, so that FST is influenced mainly by the effect of the colonization mode on the denominator (πt). Our results also indicate that it is inappropriate to use measures of average within-deme diversity in species with population turnover to estimate the scaled mutation rate, θ, because extinction can greatly reduce πS. Finally, we discuss the effect of population turnover on the effective size of a metapopulation.  相似文献   

2.
Phylogeographic analyses are a key interface between ecological and evolutionary ways of knowing because such analyses integrate the cumulative effects of demographic (ecological) processes over geological (evolutionary) time scales. Newly developed coalescent methods allow evolutionary ecologists to overcome some limitations associated with inferring population history from classic methods such as Wright’s F ST. Here we briefly contrast classic and coalescent methods for looking backward in time through a population genetic lens, focusing on the key advantages of the isolation-with-migration (IM) class of coalescent methods for distinguishing ancient connectedness from actual recurrent contemporary gene flow as causes of genetic similarity or differentiation among populations. Making this critical distinction can lead to the discovery of otherwise obscured histories underlying conventional patterns of spatial variation. We illustrate the importance of these insights using analyses of Pacific fishes, snails, and sea stars in which population sizes and divergence times are more important than rates of contemporary gene flow as determinants of population genetic differentiation. We then extend the IM method to genetic data from two model metapopulation species (California abalone, Australian damselfish). The analyses show the potential use of non-equilibrium IM methods for differentiating among metapopulation models that make different predictions about population parameters and have different implications for the design of marine protected areas and other conservation goals. At face value, the results largely rule out classic metapopulation dynamics (dominated by extinction and colonization rather than connectivity via ongoing recurrent gene flow) but, at the same time, do not strongly support a modern marine metapopulation dynamic (ecologically significant connectivity between demes). However, the results also highlight the need for much more data (i.e., loci) sampled on different spatial scales in order to determine whether metapopulation dynamics might exist on smaller scales than are typically sampled by most phylogeographers and landscape geneticists.  相似文献   

3.
The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa). We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4) and microsatellite markers (32 loci and a subset of 12 loci). Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure) and considerable genetic differentiation between sub-basins (F ST range: 0.12–0.24) with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods) allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments.  相似文献   

4.
Genetic variation among populations of chewing lice (Geomydoecus actuosi) was examined in relation to chromosomal and electrophoretic variation among populations of their hosts (Thomomys bottae) at a contact zone. Louse demes were characterized by low levels of genetic heterozygosity (H? = 0.039) that may result from founder effects during primary infestation of hosts, compounded by seasonal reductions in louse population size. Louse populations sampled from different hosts showed high levels of genetic structuring both within and among host localities. Microgeographic differentiation of louse populations is high (mean FST = 0.092) suggesting that properties of this host–parasite system promote differentiation of louse populations living on different individual hosts. Among-population differentiation in lice (FST = 0.240) was similar to that measured among host populations (FST = 0.236), suggesting a close association between gene flow in pocket gophers and gene flow in their lice.  相似文献   

5.
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.  相似文献   

6.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

7.
In most landscapes the success of habitat restoration is largely dependent on spontaneous colonization of plant species. This colonization process, and the outcome of restoration practices, can only be considered successful if the genetic makeup of founding populations is not eroded through founder effects and subsequent genetic drift. Here we used 10 microsatellite markers to investigate the genetic effects of recent colonization of the long-lived gynodioecious species Origanum vulgare in restored semi-natural grassland patches. We compared the genetic diversity and differentiation of fourteen recent populations with that of thirteen old, putative source populations, and we evaluated the effects of spatial configuration of the populations on colonization patterns. We did not observe decreased genetic diversity in recent populations, or inflated genetic differentiation among them. Nevertheless, a significantly higher inbreeding coefficient was observed in recent populations, although this was not associated with negative fitness effects. Overall population genetic differentiation was low (FST = 0.040). Individuals of restored populations were assigned to on average 6.1 different source populations (likely following the ‘migrant pool’ model). Gene flow was, however, affected by the spatial configuration of the grasslands, with gene flow into the recent populations mainly originating from nearby source populations. This study demonstrates how spontaneous colonization after habitat restoration can lead to viable populations in a relatively short time, overcoming pronounced founder effects, when several source populations are nearby. Restored populations can therefore rapidly act as stepping stones and sources of genetic diversity, likely increasing overall metapopulation viability of the study species.  相似文献   

8.
Landscape genetics provides a framework for pinpointing environmental features that determine the important exchange of migrants among populations. These studies usually test the significance of environmental variables on gene flow, yet ignore one fundamental driver of genetic variation in small populations, effective population size, Ne. We combined both approaches in evaluating genetic connectivity of a threatened ungulate, woodland caribou. We used least-cost paths to calculate matrices of resistance distance for landscape variables (preferred habitat, anthropogenic features and predation risk) and population-pairwise harmonic means of Ne, and correlated them with genetic distances, FST and Dc. Results showed that spatial configuration of preferred habitat and Ne were the two best predictors of genetic relationships. Additionally, controlling for the effect of Ne increased the strength of correlations of environmental variables with genetic distance, highlighting the significant underlying effect of Ne in modulating genetic drift and perceived spatial connectivity. We therefore have provided empirical support to emphasize preventing increased habitat loss and promoting population growth to ensure metapopulation viability.  相似文献   

9.
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.  相似文献   

10.
Contrary to assumptions commonly made in the study of population genetics, the demographic properties of many populations are not always constant. Important characteristics of populations such as migration rate and population size may vary in time and space. Moreover, local populations often come and go; the rate of extinction and the properties of colonization may also vary. In this paper, the approach to equilibrium following a disturbance in the genetic variance among populations is described. The rate of migration is shown to be critical in determining the extent to which extinction and recolonization affects genetic differentiation. Perturbations and variations through time and space in demographic parameters such as population size and migration rate are shown to be important in determining the partitioning of genetic variance. Equations are given to predict the average through time of genetic differentiation among populations in the event of a single disturbance or in constant fluctuations in the pertinent demographic parameters. In general, these fluctuations increase the FST of a species. Spatial demographic variation affects FSTmuch more than temporal variation. These demographic properties make some species unsuitable for the empirical analysis of migration with indirect genetic measures. Demographic instability may play a large role in the evolution of genetic variation.  相似文献   

11.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

12.
Genetic analysis has been promoted as a way to reconstruct recent historical dynamics (“historical demography”) by screening for signatures of events, such as bottlenecks, that disrupt equilibrium patterns of variation. Such analyses might also identify “metapopulation” processes like extinction and recolonization or source-sink dynamics, but this potential remains largely unrealized. Here we use simulations to test the ability of two currently used strategies to distinguish between a set of interconnected subpopulations (demes) that have undergone bottlenecks or extinction and recolonization events (metapopulation dynamics) from a set of static demes. The first strategy, decomposed pairwise regression, provides a holistic test for heterogeneity among demes in their patterns of isolation-by-distance. This method suffered from a type II error rate of 59–100 %, depending on parameter conditions. The second strategy tests for deviations from mutation-drift equilibrium on a deme-by-deme basis to identify sites likely to have experienced recent bottlenecks or founder effects. Although bottleneck tests have good statistical power for single populations with recent population declines, their validity in structured populations has been called into question, and they have not been tested in a metapopulation context with immigration (or colonization) and population recovery. Our simulations of hypothetical metapopulations show that population recovery can rapidly eliminate the statistical signature of a bottleneck, and that moderate levels of gene flow can generate a false signal of recent population growth for demes in equilibrium. Although we did not cover all possible metapopulation scenarios, the performance of the tests was disappointing. Our results indicate that these methods might often fail to identify population bottlenecks and founder effects if population recovery and/or gene flow are influential demographic features of the study system.  相似文献   

13.
Remote populations are predicted to be vulnerable owing to their isolation from potential source reefs, and usually low population size and associated increased extinction risk. We investigated genetic diversity, population subdivision and connectivity in the brooding reef coral Seriatopora hystrix at the limits of its Eastern Australian (EA) distribution and three sites in the southern Great Barrier Reef (GBR). Over the approximately 1270 km survey range, high levels of population subdivision were detected (global FST = 0.224), with the greatest range in pairwise FST values observed among the three southernmost locations: Lord Howe Island, Elizabeth Reef and Middleton Reef. Flinders Reef, located between the GBR and the more southerly offshore reefs, was highly isolated and showed the signature of a recent bottleneck. High pairwise FST values and the presence of multiple genetic clusters indicate that EA subtropical coral populations have been historically isolated from each other and the GBR. One putative first-generation migrant was detected from the GBR into the EA subtropics. Occasional long-distance dispersal is supported by changes in species composition at these high-latitude reefs and the occurrence of new species records over the past three decades. While subtropical populations exhibited significantly lower allelic richness than their GBR counterparts, genetic diversity was still moderately high. Furthermore, subtropical populations were not inbred and had a considerable number of private alleles. The results suggest that these high-latitude S. hystrix populations are supplemented by infrequent long-distance migrants from the GBR and may have adequate population sizes to maintain viability and resist severe losses of genetic diversity.  相似文献   

14.
In habitats where colonization and extinction are recurrent, the distribution of gene frequencies among patches of suitable habitat may reflect the age structure of different populations. In this study, we quantify population genetic structure for a pioneer tree species, Antirhea borbonica, in a chrono-sequence of primary succession on the lava flows of the Piton de La Fournaise volcano (La Réunion). Using microsatellite loci and amplified fragment length polymorphism (AFLP) markers, we quantified genetic variation within and among populations for early- and late-succession populations in a landscape where extinction and recolonization are recurrent (the ‘Grand Brûlé’) and for late-succession populations in a more stable landscape. This study produced three main results. First, we detected no evidence that founder events increase genetic differentiation among colonizing populations; FST values among early- and among late-succession populations were similar. Second, we found no evidence for isolation by distance; genetic distance was not correlated with spatial distance within and among populations. Third, FIS values are consistently high in all populations, despite the fact that A. borbonica populations are functionally close to dioecy and thus expected to have an outcrossing mating system. Multiple colonization events from different sources may limit differentiation among young populations and spatial isolation may enhance differentiation among late-succession populations. Ecological processes acting during colonization may create the conditions for spatial aggregation within pioneer populations, and thus contribute to the high FIS values.  相似文献   

15.
Identifying local adaptation is crucial in conservation biology to define ecotypes and establish management guidelines. Local adaptation is often inferred from the detection of loci showing a high differentiation between populations, the so‐called FST outliers. Methods of detection of loci under selection are reputed to be robust in most spatial population models. However, using simulations we showed that FST outlier tests provided a high rate of false‐positives (up to 60%) in fractal environments such as river networks. Surprisingly, the number of sampled demes was correlated with parameters of population genetic structure, such as the variance of FSTs, and hence strongly influenced the rate of outliers. This unappreciated property of river networks therefore needs to be accounted for in genetic studies on adaptation and conservation of river organisms.  相似文献   

16.
Biogeographic range expansions, when related to dispersal limitation, may have counter intuitive effects on genetic diversity. At range margins the relative roles of demographic changes, connectivity and genetic diversity need to be integrated for a successful assessment of population viability. Historically the Hazel grouse (Bonasa bonasia) in France was found in the north of the French Alps and also in a disjunct population in the nearby Jura Mountains. The species has recently undergone a range expansion in a north to south axis in the Alps. Local population size estimates and migration patterns during expansion have previously been studied. In this study, we performed genotyping at neutral (microsatellite) and adaptive (MHC) genetic markers in Hazel grouse. We compared diversity and differentiation (FST and DEST) at three sampling localities along the expansion axis in the French Alps and Jura, as well as at two sampling localities in Sweden, where the population has had a long-term continuous and stable distribution. Strong serial founder effects were found between the French localities, resulting in stronger isolation further south, with a relatively high neutral differentiation (pair-wise FST = 0.117). However, the loss of adaptive diversity MHC was slight. No adaptive differentiation (MHC DEST = ?0.015) was observed, thus, the French localities can be considered uniform units with regard to MHC diversity, a criterion to treat populations in these localities as a management unit.  相似文献   

17.
We provide initial information regarding the population structure and genetic diversity of Stenella frontalis from the Caribbean and southeastern Brazil from analyses of mitochondrial control region sequences and sequences from the first intron of the α-lactalbumin gene. Comparisons with previously described S. frontalis sequences showed a high number of haplotypes shared between populations throughout their distribution range. High diversity was found for southeastern Brazil and Caribbean samples, and population structure analyses indicate significant differentiation among population units at the FST level, but not at the ΦST level. Significant differentiation at the FST level was found between the Caribbean population unit and all other populations units. These results suggest historical or present connectivity between the Azores and Madeira and the southeastern Brazil groups and population differentiation between the Caribbean and southeastern Brazil, supporting the notion of two separate stocks in the waters around the Atlantic coast of South America.  相似文献   

18.
Boltonia decurrens(Asteraceae), a federally listed, threatened floodplain species, requires regular flooding for suitable habitat and seed dispersal. Flood suppression and habitat destruction have resulted in fewer than 25 populations remaining throughout its 400 km range. Because individual populations are widely interspaced (>10 km) and subject to frequent extinction and colonization, seed dispersal along the river, not pollen flow, is likely the primary determinant of population genetic structure. We used neutral genetic markers (isozymes) assayed for fourteen populations to determine which demographic processes contribute to the genetic structure of B. decurrens. Significant genetic differentiation was detected among populations (F ST=0.098, P< 0.05) but not among regions (F RT=0.013, P> 0.05), suggesting that long-distance dispersal events occur and involve seed from a small number of populations. Correspondingly, we found no evidence of isolation by distance, and admixture analyses indicate that colonization events involve seed from 3 to 5 source populations. Individual populations exhibited high levels of fixation (mean F IS=0.192, P< 0.05), yet mean population outcrossing rates were high (t m=0.87–0.95) and spatial autocorrelation analyses revealed no fine-scale within population structure, indicating that inbreeding alone cannot explain the observed fixation. Rather, genetic bottlenecks, detected for 12 of 14 populations, and admixture at population founding may be important sources of fixation. These observations are consistent with a metapopulation model and confirm the importance of regular flooding events, capable of producing suitable habitat and dispersing seed long distances, to the long-term persistence of B. decurrens.  相似文献   

19.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.  相似文献   

20.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号