首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neuronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role.  相似文献   

2.
Phase-of-firing coding of natural visual stimuli in primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.  相似文献   

3.
Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.  相似文献   

4.
Local field potentials (LFPs) arise largely from dendritic activity over large brain regions and thus provide a measure of the input to and local processing within an area. We characterized LFPs and their relationship to spikes (multi and single unit) in monkey inferior temporal cortex (IT). LFP responses in IT to complex objects showed strong selectivity at 44% of the sites and tolerance to retinal position and size. The LFP preferences were poorly predicted by the spike preferences at the same site but were better explained by averaging spikes within approximately 3 mm. A comparison of separate sites suggests that selectivity is similar on a scale of approximately 800 microm for spikes and approximately 5 mm for LFPs. These observations imply that inputs to IT neurons convey selectivity for complex shapes and that such input may have an underlying organization spanning several millimeters.  相似文献   

5.
Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small-world networks. Our results suggest that activity of neurons from multiple areas of the rat somatosensory system contributes to the integration of local computations arisen in distributed functional cell assemblies according to the principles of SWNs.  相似文献   

6.
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency.Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements.In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected.These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.  相似文献   

7.
A focal visual stimulus outside the classical receptive field (RF) of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP). This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA) ranging from 0 to 100 ms: the first (S1) outside the RF and the second (S2) over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation.  相似文献   

8.
While functional imaging is widely used in studies of the brain, how well the hemodynamic signal represents the underlying neural activity is still unclear. And there is a debate on whether hemodynamic signal is more tightly related to synaptic activity or action potentials. This study intends to address these questions by examining neurovascular coupling driven by pyramidal cells in the motor cortex of rats. Pyramidal cells in the motor cortex of rats were selectively transduced with the light sensitive cation channel channelrhodopsin-2 (ChR2). Electrophysiological recordings and optical intrinsic signal imaging were performed simultaneously and synchronously to capture the neural activity and hemodynamics induced by optical stimulation of ChR2-expressing pyramidal cells. Our results indicate that both synaptic activity (local field potential, LFP) and action potentials (multi-unit activity, MUA) are tightly related to hemodynamic signals. While LFPs in γ band are better in predicting hemodynamic signals elicited by short stimuli, MUA has better predictions to hemodynamic signals elicited by long stimuli. Our results also indicate that strong nonlinearity exists in neurovascular coupling.  相似文献   

9.
Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (<12 Hz) is high, regardless of whether their energy is computed at the scale of milliseconds or seconds. Stimulus information in higher bands (>50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity.  相似文献   

10.
The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data.  相似文献   

11.
Brain-machine interfaces are being developed to assist paralyzed patients by enabling them to operate machines with recordings of their own neural activity. Recent studies show that motor parameters, such as hand trajectory, and cognitive parameters, such as the goal and predicted value of an action, can be decoded from the recorded activity to provide control signals. Neural prosthetics that use simultaneously a variety of cognitive and motor signals can maximize the ability of patients to communicate and interact with the outside world. Although most studies have recorded electroencephalograms or spike activity, recent research shows that local field potentials (LFPs) offer a promising additional signal. The decode performances of LFPs and spike signals are comparable and, because LFP recordings are more long lasting, they might help to increase the lifetime of the prosthetics.  相似文献   

12.
Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na(+) current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating "dense" activity clusters in the cerebellar granular layer.  相似文献   

13.
In recent years, single-cell stimulation experiments have resulted in substantial progress towards directly linking single-cell activity to movement and sensation. Recent advances in electrical recording and stimulation techniques have enabled control of single neuron spiking in vivo and have contributed to our understanding of neuronal coding schemes in the brain. Here, we review single neuron stimulation effects in different brain structures and how they vary with artificially inserted spike patterns. We briefly compare single neuron stimulation with other brain stimulation techniques. A key advantage of single neuron stimulation is the precise control of the evoked spiking patterns. Systematically varying spike patterns and measuring evoked movements and sensations enables ‘decoding’ of the single-cell spike patterns and provides insights into the readout mechanisms of sensory and motor cortical spikes.  相似文献   

14.
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.  相似文献   

15.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.  相似文献   

16.
Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the “local field potential” (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.  相似文献   

17.
18.
Kajikawa Y  Schroeder CE 《Neuron》2011,72(5):847-858
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA?< CSD?< LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.  相似文献   

19.
Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance energy expenditure against encoding error. Our recently proposed optimal, energy-constrained neural coder (Jones et al. Frontiers in Computational Neuroscience, 9, 61 2015) postulates that neurons time spikes to minimize the trade-off between stimulus reconstruction error and expended energy by adjusting the spike threshold using a simple dynamic threshold. Here, we show that this proposed coding scheme is related to existing coding schemes, such as rate and temporal codes. We derive an instantaneous rate coder and show that the spike-rate depends on the signal and its derivative. In the limit of high spike rates the spike train maximizes fidelity given an energy constraint (average spike-rate), and the predicted interspike intervals are identical to those generated by our existing optimal coding neuron. The instantaneous rate coder is shown to closely match the spike-rates recorded from P-type primary afferents in weakly electric fish. In particular, the coder is a predictor of the peristimulus time histogram (PSTH). When tested against in vitro cortical pyramidal neuron recordings, the instantaneous spike-rate approximates DC step inputs, matching both the average spike-rate and the time-to-first-spike (a simple temporal code). Overall, the instantaneous rate coder relates optimal, energy-constrained encoding to the concepts of rate-coding and temporal-coding, suggesting a possible unifying principle of neural encoding of sensory signals.  相似文献   

20.
Neurophysiology of the BOLD fMRI signal in awake monkeys   总被引:3,自引:0,他引:3  
BACKGROUND: Simultaneous intracortical recordings of neural activity and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in primary visual cortex of anesthetized monkeys demonstrated varying degrees of correlation between fMRI signals and the different types of neural activity, such as local field potentials (LFPs), multiple-unit activity (MUA), and single-unit activity (SUA). One important question raised by the aforementioned investigation is whether the reported correlations also apply to alert subjects. RESULTS: Monkeys were trained to perform a fixation task while stimuli within the receptive field of each recording site were used to elicit neural responses followed by a BOLD response. We show -- also in alert behaving monkeys -- that although both LFP and MUA make significant contributions to the BOLD response, LFPs are better and more reliable predictors of the BOLD signal. Moreover, when MUA responses adapt but LFP remains unaffected, the BOLD signal remains unaltered. CONCLUSIONS: The persistent coupling of the BOLD signal to the field potential when LFP and MUA have different time evolutions suggests that BOLD is primarily determined by the local processing of inputs in a given cortical area. In the alert animal the largest portion of the BOLD signal's variance is explained by an LFP range (20-60 Hz) that is most likely related to neuromodulation. Finally, the similarity of the results in alert and anesthetized subjects indicates that at least in V1 anesthesia is not a confounding factor. This enables the comparison of human fMRI results with a plethora of electrophysiological results obtained in alert or anesthetized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号