首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ejaculated spermatozoa must undergo a series of biochemical modifications called capacitation, prior to fertilization. Protein-kinase A (PKA) mediates sperm capacitation, although its regulation is not fully understood. Sperm contain several A-kinase anchoring proteins (AKAPs), which are scaffold proteins that anchor PKA. In this study, we show that AKAP3 is degraded in bovine sperm incubated under capacitation conditions. The degradation rate is variable in sperm from different bulls and is correlated with the capacitation ability. The degradation of AKAP3 was significantly inhibited by MG-132, a proteasome inhibitor, indicating that AKAP3 degradation occurs via the proteasomal machinery. Treatment with Ca2+-ionophore induced further degradation of AKAP3; however, this effect was found to be enhanced in the absence of Ca2+ in the medium or when intracellular Ca2+ was chelated the degradation rate of AKAP3 was significantly enhanced when intracellular space was alkalized using NH4Cl, or when sperm were treated with Ht31, a peptide that contains the PKA-binding domain of AKAPs. Moreover, inhibition of PKA activity by H89, or its activation using 8Br-cAMP, increased AKAP3 degradation rate. This apparent contradiction could be explained by assuming that binding of PKA to AKAP3 protects AKAP3 from degradation. We conclude that AKAP3 degradation is regulated by intracellular alkalization and PKARII anchoring during sperm capacitation.  相似文献   

3.
Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.  相似文献   

4.
Cross talk between signal transduction pathways augments pepsinogen secretion from gastric chief cells. A-kinase anchoring proteins (AKAPs) associate with regulatory subunits of protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (PP2B) and localize this protein complex to specific cell compartments. We determined whether an AKAP-signaling protein complex exists in chief cells and whether this modulates secretion. In Western blots, we identified AKAP150, a rodent homologue of human AKAP79 that coimmunoprecipitates with PKA, PKC, and actin. The association of PKA and PP2B was demonstrated by affinity chromatography. Confocal microscopy revealed colocalized staining at the cell periphery for AKAP150 and PKC. Ht31, a peptide that competitively displaces PKA from the AKAP complex, but not Ht31P, a control peptide, inhibited 8-Br-cAMP-induced pepsinogen secretion. Ht31 did not inhibit secretion that was stimulated by agents whose actions are mediated by PKC and/or calcium. However, Ht31, but not Ht31P, inhibited carbachol- and A23187-stimulated augmentation of secretion from cells preincubated with cholera toxin. These data suggest the existence in chief cells of a protein complex that includes AKAP150, PKA, PKC, and PP2B. Disruption of the AKAP-PKA linkage impairs cAMP-mediated pepsinogen secretion and cross talk between signaling pathways.  相似文献   

5.
A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.  相似文献   

6.
Protein kinase A (PKA) is targeted to distinct subcellular localizations by specific protein kinase A anchoring proteins (AKAPs). AKAPs are divided into subclasses based on their ability to bind type I or type II PKA or both. Dual-specificity AKAPs were recently reported to have an additional PKA binding determinant called the RI specifier region. A bioinformatic search with the consensus RI specifier region identified a novel AKAP, the splicing factor arginine/serine-rich 17A (SFRS17A). Here, we show by a variety of protein interaction assays that SFRS17A binds both type I and type II PKA in vitro and inside cells, demonstrating that SFRS17A is a dual-specific AKAP. Moreover, immunofluorescence experiments show that SFRS17A colocalizes with the catalytic subunit of PKA as well as the splicing factor SC35 in splicing factor compartments. Using the E1A minigene splicing assay, we found that expression of wild type SFRS17A conferred regulation of E1A alternative splicing, whereas the mutant SFRS17A, which is unable to bind PKA, did not. Our data suggest that SFRS17A is an AKAP involved in regulation of pre-mRNA splicing possibly by docking a pool of PKA in splicing factor compartments.  相似文献   

7.
Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. These data suggest that PKA anchoring is a key biochemical mechanism controlling motility. We now report the isolation, identification, cloning, and characterization of AKAP110, the predominant AKAP detected in sperm lysates. AKAP110 cDNA was isolated and sequenced from mouse, bovine, and human testis libraries. Using truncated mutants, the RII-binding domain was identified. Alignment of the RII-binding domain on AKAP110 to those from other AKAPs reveals that AKAPs contain eight functionally conserved positions within an amphipathic helix structure that are responsible for RII interaction. Northern analysis of eight different tissues detected AKAP110 only in the testis, and in situ hybridization analysis detected AKAP110 only in round spermatids, suggesting that AKAP110 is a protein found only in male germ cells. Sperm cells contain both RI, located primarily in the acrosomal region of the head, and RII, located exclusively in the tail, regulatory subunits of PKA. Immunocytochemical analysis detected AKAP110 in the acrosomal region of the sperm head and along the entire length of the principal piece. These data suggest that AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction.  相似文献   

8.
Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.  相似文献   

9.
Protein kinase A (PKA) is targeted to discrete subcellular locations close to its intended substrates through interaction with A kinase-anchoring proteins (AKAPs). Ion channels represent a diverse and important group of kinase substrates, and it has been shown that membrane targeting of PKA through association with AKAPs facilitates PKA-mediated phosphorylation and regulation of several classes of ion channel. Here, we investigate the effect of AKAP79, a membrane-associated multivalent-anchoring protein, upon the function and modulation of the strong inwardly rectifying potassium channel, Kir2.1. Functionally, the presence of AKAP79 enhanced the response of Kir2.1 to elevated intracellular cAMP, suggesting a requirement for a pool of PKA anchored close to the channel. Antibodies directed against a hemagglutinin epitope tag on Kir2.1 coimmunoprecipitated AKAP79, indicating that the two proteins exist together in a complex within intact cells. In support of this, glutathione S-transferase fusion proteins of both the intracellular N and C domains of Kir2.1 isolated AKAP79 from cell lysates, while glutathione S-transferase alone failed to interact with AKAP79. Together, these findings suggest that AKAP79 associates directly with the Kir2.1 ion channel and may serve to anchor kinase enzymes in close proximity to key channel phosphorylation sites.  相似文献   

10.
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD–2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.  相似文献   

11.
Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes. Using a combination of bioinformatics and peptide array screening, we have developed a high affinity-binding peptide called RIAD (RI anchoring disruptor) with >1000-fold selectivity for type I PKA over type II PKA. Cell-soluble RIAD selectively uncouples cAMP-mediated inhibition of T cell function and inhibits progesterone synthesis at the mitochondria in steroid-producing cells. This study suggests that these processes are controlled by the type I PKA holoenzyme and that RIAD can be used as a tool to define anchored type I PKA signaling events.  相似文献   

12.
Protein kinase A-anchoring proteins (AKAPs) influence fundamental cellular processes by directing the cAMP-dependent protein kinase (PKA) toward its intended substrates. In this report we describe the identification and characterization of a ternary complex of AKAP220, the PKA holoenzyme, and the IQ domain GTPase-activating protein 2 isoform (IQGAP2) that is enriched at cortical regions of the cell. Formation of an IQGAP2-AKAP220 core complex initiates a subsequent phase of protein recruitment that includes the small GTPase Rac. Biochemical and molecular biology approaches reveal that PKA phosphorylation of Thr-716 on IQGAP2 enhances association with the active form of the Rac GTPase. Cell-based experiments indicate that overexpression of an IQGAP2 phosphomimetic mutant (IQGAP2 T716D) enhances the formation of actin-rich membrane ruffles at the periphery of HEK 293 cells. In contrast, expression of a nonphosphorylatable IQGAP2 T716A mutant or gene silencing of AKAP220 suppresses formation of membrane ruffles. These findings imply that IQGAP2 and AKAP220 act synergistically to sustain PKA-mediated recruitment of effectors such as Rac GTPases that impact the actin cytoskeleton.  相似文献   

13.
A-kinase anchoring proteins (AKAPs) define an expanding group of scaffold proteins that display a signature binding site for the RI/RII subunit of protein kinase A. AKAPs are multivalent and a subset of these scaffold proteins also display the ability to associate with the prototypic member of G-protein-coupled receptors, the beta(2)-adrenergic receptor. Both AKAP79 (also known as AKAP5) and AKAP250 (also known as gravin or AKAP12) have been shown to associate with the beta(2)-adrenergic receptor, but each directs downstream signaling events in decidedly different manners. The primary structures, common and unique protein motifs are of interest. Both proteins display largely natively unfolded primary sequences that provide a necklace on which short, structured regions of sequence are found. Membrane association appears to involve both interactions with the lipid bilayer via docking to a G-protein-coupled receptor as well as interactions of short positively charged domains with the inner leaflet of the cell membrane. Gravin, unlike AKAP79, displays a canonical site at its N-terminus that is subject to N-myristoylation. AKAP79 appears to function in switching signaling pathways of the receptor from adenylylcyclase to activation of the mitogen-activated protein kinase cascade. Gravin, in contrast, is essential for the resensitization and recycling of the receptors following agonist-induced activation, desensitization, and internalization. Each AKAP provides a template that enables space-time continuum features to G-protein-coupled signaling pathways as well as a paradigm for explaining apparent compartmentalization of cell signaling.  相似文献   

14.
Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA) has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs), and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2). STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC) and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM). STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.  相似文献   

15.
Postsynaptic densities (PSD) are a network of proteins located on the internal surface of excitatory synapses just inside the postsynaptic membrane. Enzymes associated with the PSD are optimally positioned to respond to signals transduced across the postsynaptic membrane resulting from excitatory synaptic transmission or neurotransmitter release. We present evidence suggesting that type II cAMP-dependent protein kinase (PKA) is anchored to the PSD through interaction of its regulatory subunit (RII) with an A-Kinase Anchor Protein (AKAPs). A cDNA for the human RII-anchoring protein, AKAP 79, was isolated by screening an expression library with radiolabeled RII. This cDNA (2621 base pairs) encodes a protein of 427 amino acids with 76% identity to bovine brain AKAP 75 and 93% identity to a carboxyl-terminal RII-binding fragment of murine brain AKAP 150. A bacterially expressed 92-amino acid fragment, AKAP 79 (335-427) was able to bind RII alpha. Disruption of secondary structure by site-directed mutagenesis at selected residues within a putative acidic amphipathic helix located between residues 392 and 408 prevented RII binding. Immunological studies demonstrate that AKAP 79 is predominantly expressed in the cerebral cortex and is a component of fractions enriched for postsynaptic densities. AKAP antisera strongly cross-react with a 150-kDa protein in murine PSD believed to be AKAP 150. Co-localization of the type II PKA in purified PSD fractions was confirmed immunologically by detection of RII and enzymologically by measuring cAMP-stimulated phosphorylation of the heptapeptide substrate Kemptide. Approximately 30% of the PSD kinase activity was specifically inhibited by PKI 5-24 peptide, a highly specific inhibitor of PKA. We propose that AKAP 79 and AKAP 150 function to anchor the type II PKA to the PSD, presumably for a role in the regulation of postsynaptic events.  相似文献   

16.
Dodge K  Scott JD 《FEBS letters》2000,476(1-2):58-61
A molecular explanation for the specificity of the cAMP-dependent protein kinase (PKA) can be provided by its compartmentalization through association with A-kinase-anchoring proteins (AKAPs). Structural and functional studies have led to the development of an anchoring model proposing that AKAPs contain a common PKA binding domain and a unique subcellular targeting domain. The discovery that AKAPs can bind other signaling enzymes led to the addition of a third property, that of scaffolding molecule. Recent research has now expanded the role of AKAPs to members of multiunit complexes containing both upstream activators and downstream targets.  相似文献   

17.
Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding domains of different AKAPs is unknown, and mechanisms that regulate AKAP-PKA affinity are not clearly defined. Using surface plasmon resonance (SPR) spectroscopy, we measured real-time kinetics of RII interaction with various AKAPs. Base-line equilibrium binding constants (K(d)) for RII binding to Ht31, mAKAP, and AKAP15/18 were 10 nm, 119 nm, and 6.6 microm, respectively. PKA stimulation of intact Chinese hamster ovary cells increased RIIalpha binding to AKAP100/mAKAP and AKAP15/18 by approximately 7- and 82-fold, respectively. These results suggest that differences in primary sequence of the RII-binding domain may be responsible for the selective affinity of RII for different AKAPs. Furthermore, RII autophosphorylation may provide additional localized regulation of kinase anchoring. In cardiac myocytes, disruption of RII-AKAP interaction decreased PKA phosphorylation of the PKA substrate, myosin-binding protein C. Thus, these mechanisms may be involved in adding additional specificity in intracellular signaling in diverse cell types and under conditions of cAMP/PKA activation.  相似文献   

18.
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.  相似文献   

19.

Background

A-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize.

Results

In gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single "domain" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies.

Conclusion

Both AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.  相似文献   

20.
A-kinase anchoring proteins (AKAPs) are adapter proteins that are involved in directing cAMP-dependent protein kinase and some other signaling enzymes to certain intracellular locations. In this study, we investigate the domain architecture of an AKAP from Caenorhabditis elegans (AKAP(CE)). We show that AKAP(CE) shares two domains with the Smad anchor for receptor activation, a FYVE-finger and a transforming growth factor beta (TGFbeta) receptor binding domain, suggesting that AKAP(CE) may interact with a receptor belonging to the TGFbeta receptor family. This predicted novel AKAP function supports the recent view of AKAPs as adapter proteins that can be involved in various signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号