首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Resting state brain networks (RSNs) are spatially distributed large-scale networks, evidenced by resting state functional magnetic resonance imaging (fMRI) studies. Importantly, RSNs are implicated in several relevant brain functions and present abnormal functional patterns in many neuropsychiatric disorders, for which stress exposure is an established risk factor. Yet, so far, little is known about the effect of stress in the architecture of RSNs, both in resting state conditions or during shift to task performance. Herein we assessed the architecture of the RSNs using functional magnetic resonance imaging (fMRI) in a cohort of participants exposed to prolonged stress (participants that had just finished their long period of preparation for the medical residence selection exam), and respective gender- and age-matched controls (medical students under normal academic activities). Analysis focused on the pattern of activity in resting state conditions and after deactivation. A volumetric estimation of the RSNs was also performed. Data shows that stressed participants displayed greater activation of the default mode (DMN), dorsal attention (DAN), ventral attention (VAN), sensorimotor (SMN), and primary visual (VN) networks than controls. Importantly, stressed participants also evidenced impairments in the deactivation of resting state-networks when compared to controls. These functional changes are paralleled by a constriction of the DMN that is in line with the pattern of brain atrophy observed after stress exposure. These results reveal that stress impacts on activation-deactivation pattern of RSNs, a finding that may underlie stress-induced changes in several dimensions of brain activity.  相似文献   

2.
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.  相似文献   

3.
Gliomas can display marked changes in the concentrations of energy metabolism molecules such as creatine (Cr), phosphocreatine (PCr) and lactate, as measured using magnetic resonance spectroscopy (MRS). Moreover, the BOLD (blood oxygen level dependent) contrast enhancement in functional magnetic resonance imaging (fMRI) can be reduced or missing within or near gliomas, while neural activity is not significantly reduced (so-called neurovascular decoupling), so that the location of functionally eloquent areas using fMRI can be erroneous. In this paper, we adapt a previously developed model of the coupling between neural activation, energy metabolism and hemodynamics, by including the venous dilatation Balloon model of Buxton and Frank. We show that decreasing the cerebral blood flow (CBF) baseline value, or the CBF increase fraction, results in a decrease of the BOLD signal and an increase of the lactate peak during a sustained activation. Baseline lactate and PCr levels are not significantly affected by CBF baseline reduction, but are altered even by a moderate decrease of mitochondrial respiration. Decreasing the total Cr and PCr concentration reduces the BOLD signal after the initial overshoot. In conclusion, we suggest that the coupled use of BOLD fMRI and MRS could contribute to a better understanding of the neurovascular and metabolic decoupling in gliomas.  相似文献   

4.
功能磁共振成像(functional magnetic resonance imaging,fMRI)被用于检测静息时脑功能神经网络.作者运用静息fMRI检测海马硬化颞叶癫痫(temporal lobe epilepsy,TLE)脑"默认模式",采用感兴趣区域功能连接分析检测16例TLE患者和16名正常对照静息时脑的"默认模式",并进行组内和组间分析.研究发现,与正常对照相比,TLE静息时海马、颞极、额叶、颞叶、壳核及楔前叶等脑区与后扣带回的功能连接增强.研究结果表明TLE患者的固有脑功能组织模式有可能出现紊乱.这一研究将有助于从脑功能的角度了解癫痫患者某些临床症状的发病机理,为今后癫痫诊治的发展提供一定的帮助.  相似文献   

5.
In vivo 13C magnetic resonance spectroscopy (MRS) studies of the brain have quantitatively assessed rates of glutamate-glutamine cycle (Veye) and glucose oxidation (CMRGle(ox)) by detecting 13C label turnover from glucose to glutamate and glutamine. Contrary to expectations from in vitro and ex vivo studies, the in vivo 13C-MRS results demonstrate that glutamate recycling is a major metabolic pathway, inseparable from its actions of neurotransmission. Furthermore, both in the awake human and in the anesthetized rat brain, Veye and CMRGle(ox) are stoichiometrically related, where more than two thirds of the energy from glucose oxidation supports events associated with glutamate neurotransmission. The high energy consumption of the brain measured at rest and its quantitative relation to neurotransmission reflects a sizeable activity level for the resting brain. The high activity of the non-stimulated brain, as measured by cerebral metabolic rate of oxygen use (CMRO2), establishes a new neurophysiological basis of cerebral function that leads to reinterpreting functional imaging data because the large baseline signal is commonly discarded in cognitive neuroscience paradigms. Changes in energy consumption (delta CMRO2%) can also be obtained from magnetic resonance imaging (MRI) experiments, using the blood oxygen level-dependent (BOLD) image contrast, provided that all the separate parameters contributing to the functional MRI (fMRI) signal are measured. The BOLD-derived delta CMRO2% when compared with alterations in neuronal spiking rate (delta v%) during sensory stimulation in the rat reveals a stoichiometric relationship, in good agreement with 13C-MRS results. Hence fMRI when calibrated so as to provide delta CMRO2% can provide high spatial resolution evaluation of neuronal activity. Our studies of quantitative measurements of changes in neuroenergetics and neurotransmission reveal that a stimulus does not provoke an arbitrary amount of activity in a localized region, rather a total level of activity is required where the increment is inversely related to the level of activity in the non-stimulated condition. These biophysical experiments have established relationships between energy consumption and neuronal activity that provide novel insights into the nature of brain function and the interpretation of fMRI data.  相似文献   

6.
The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within those RSNs, we applied a conditional Granger causality analysis (CGCA) to the RSNs retrieved by independent component analysis (ICA) from resting state functional magnetic resonance imaging (fMRI) data. Our analysis provided evidence for specific causal influences among the detected RSNs: default-mode, dorsal attention, core, central-executive, self-referential, somatosensory, visual, and auditory networks. In particular, we identified that self-referential and default-mode networks (DMNs) play distinct and crucial roles in the human brain functional architecture. Specifically, the former RSN exerted the strongest causal influence over the other RSNs, revealing a top-down modulation of self-referential mental activity (SRN) over sensory and cognitive processing. In quite contrast, the latter RSN was profoundly affected by the other RSNs, which may underlie an integration of information from primary function and higher level cognition networks, consistent with previous task-related studies. Overall, our results revealed the causal influences among these RSNs at different processing levels, and supplied information for a deeper understanding of the brain network dynamics.  相似文献   

7.
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6‐min resting‐state data set acquired from 21 naturally sleeping term‐born (age 26 ± 6.7 d), healthy neonates to investigate the emerging functional resting‐state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default‐mode‐network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA‐based denoising of fMRI data increased the number of networks identified with group‐ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth.  相似文献   

8.
This review describes functional magnetic resonance imaging (fMRI), the intravital noninvasive dynamic study of the active zones of cerebral structures at the time of their activity, fMR is based on the difference in magnetic properties of oxyhemoglobin--the oxygen carrier, and deoxyhemoglobin--a product produced in the areas of oxygen consumption, the brain parenchyma. This ratio is reflected as the physical phenomenon BOLD (blood oxygenation level dependent) that is a marker of neuronal activity. fMRI has good spatial resolution and the possibility of multiple repetitions of the research. This allows the 3D reconstruction of the sequence of formation and intracerebral "geometry" (stereometry) of newly formed neural ensembles (NE) and/or realization of potentially pre-existing NE. fMRI is an optimal tool for neuronal activity mapping, or more accurate, for functional state of the NE in the reconstruction of neural networks; it should be regarded as the technology for studying the brain of humans and animals, both in terms of natural life activity, and in pathological conditions.  相似文献   

9.

Background

Obsessive-compulsive disorder (OCD) is a mental illness characterized by the loss of control. Because the cingulate cortex is believed to be important in executive functions, such as inhibition, we used functional magnetic resonance imaging (fMRI) techniques to examine whether and how activity and functional connectivity (FC) of the cingulate cortex were altered in drug-naïve OCD patients.

Methods

Twenty-three medication-naïve OCD patients and 23 well-matched healthy controls received fMRI scans in a resting state. Functional connectivities of the anterior cingulate (ACC) and the posterior cingulate (PCC) to the whole brain were analyzed using correlation analyses based on regions of interest (ROI) identified by the fractional amplitude of low-frequency fluctuation (fALFF). Independent Component Analysis (ICA) was used to identify the resting-state sub-networks.

Results

fALFF analysis found that regional activity was increased in the ACC and decreased in the PCC in OCD patients when compared to controls. FC of the ACC and the PCC also showed different patterns. The ACC and the PCC were found to belong to different resting-state sub-networks in ICA analysis and showed abnormal FC, as well as contrasting correlations with the severity of OCD symptoms.

Conclusions

Activity of the ACC and the PCC were increased and decreased, respectively, in the medication-naïve OCD patients compared to controls. Different patterns in FC were also found between the ACC and the PCC with respect to these two groups. These findings implied that the cardinal feature of OCD, the loss of control, may be attributed to abnormal activities and FC of the ACC and the PCC.  相似文献   

10.
Research suggests that fibromyalgia is a central, widespread pain syndrome supported by a generalized disturbance in central nervous system pain processing. Over the past decades, multiple lines of research have identified the locus for many functional, chronic pain disorders to the central nervous system, and the brain. In recent years, brain neuroimaging techniques have heralded a revolution in our understanding of chronic pain, as they have allowed researchers to non-invasively (or minimally invasively) evaluate human patients suffering from various pain disorders. While many neuroimaging techniques have been developed, growing interest in two specific imaging modalities has led to significant contributions to chronic pain research. For instance, resting functional connectivity magnetic resonance imaging (fcMRI) is a recent adaptation of fMRI that examines intrinsic brain connectivity - defined as synchronous oscillations of the fMRI signal that occurs in the resting basal state. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive magnetic resonance imaging technique that can quantify the concentration of multiple metabolites within the human brain. This review will outline recent applications of the complementary imaging techniques - fcMRI and 1H-MRS - to improve our understanding of fibromyalgia pathophysiology and how pharmacological and non-pharmacological therapies contribute to analgesia in these patients. A better understanding of the brain in chronic pain, with specific linkage as to which neural processes relate to spontaneous pain perception and hyperalgesia, will greatly improve our ability to develop novel therapeutics. Neuroimaging will play a growing role in the translational research approaches needed to make this a reality.  相似文献   

11.
We compared in vitro1H magnetic resonance spectroscopy (MRS) measurements of rat brain extracts (rats: 2–56 days old) with chromatographic measurements and in a further step also with results of in vivo MRS. The following substances can be reliably measured in brain extracts by in vitro MRS: N-acetylaspartate (NAA), total creatine (Cr), phosphorylethanoloamine (PE), taurine (Tau), glutamate (Glu), glutamine (Gln), -aminobutyrate (GABA) and alanine (Ala). Two different methods of MRS data evaluation compared with chromatographic data on Cr and NAA are shown. During development of the rat from day 2–56 brain concentrations of PE, Tau and Ala decrease, those of NAA, Cr, Glu and Gln increase, while GABA does not change. The developmental patterns of these substances are the same, whether measured by in vitro MRS or by chromatographic methods. Quantification of NAA, Cr, Tau, GABA and PE leads to the same results with both methods, while Glu, Gln and Ala concentrations determined by in vitro MRS are apparently lower than those measured chemically. The NAA/Cr ratios of 7 to 35-day-old rats were determined by in vivo1H MRS. These results correlate with chromatographic and in vitro data. Using appropriate methods in the in vivo and in vitro MR-technique, the obtained data compare well with the chromatographic results.  相似文献   

12.
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.  相似文献   

13.
Limited potential of electroencephalogram (EEG), magnetic resonance images (MRI) and cerebrospinal fluid (CSF) test for 14-3-3 protein in the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) resulted in developments in diagnostic premortem tehniques. Recent studies provided evidence that magnetic resonance spectroscopy (MRS) and measurement of total-tau (T-tau) and phospho-tau (P-tau) may be useful to identify patients with CJD. We combined detected metabolic changes in the brain by MRS and measured T-tau and tau-pT181 by ELISA, and tau-pT231 by Westernblot in a patient with autopsy proven sCJD. Our results show that in contrast to negative CSF 14-3-3 protein, nonspecific EEG and MRI, MRS revealed metabolic alterations in regions of the brain that has appeared normal on MRI, and tau tests has shown measurable levels of phosphorylated and non-phosphorylated isoforms in CSF. We conclude that rapidly progressive dementia with negative 14-3-3 test and non-specific initial EEG and MRI must still be considered in the differential diagnosis of the sCJD. Combination of serial functional MRI along with MRS study and measurement of tau ratio could improve the early diagnosis of sCJD. The current case is the first attempt to study results of the use of MRS and tau tests in a case of sCJD with diagnostic dilemma.  相似文献   

14.
We used magneto-encephalography to study the temporal dynamics of band-limited power correlation at rest within and across six brain networks previously defined by prior functional magnetic resonance imaging (fMRI) studies. Epochs of transiently high within-network band limited power (BLP) correlation were identified and correlation of BLP time-series across networks was assessed in these epochs. These analyses demonstrate that functional networks are not equivalent with respect to cross-network interactions. The default-mode network and the posterior cingulate cortex, in particular, exhibit the highest degree of transient BLP correlation with other networks especially in the 14-25 Hz (β band) frequency range. Our results indicate that the previously demonstrated neuroanatomical centrality of the PCC and DMN has a physiological counterpart in the temporal dynamics of network interaction at behaviorally relevant timescales. This interaction involved subsets of nodes from other networks during periods in which their internal correlation was low.  相似文献   

15.
阿尔茨海默病(Alzheimer’s disease,AD)是当今老年人最常见的一种原发性神经退行性疾病。其主要病理学特征表现为神经元的脱失、神经纤维缠结及老年斑形成。轻度认知障碍(mild cognitive impairment,MCI)被认为是AD及其他老年痴呆症的前驱阶段,可进一步转化成AD,且MCI与AD有着相似的病理变化。随着MCI和AD患病数的逐年增加,其给患者家属及社会增添了巨大负担,因此,对MCI和AD作出早期诊断变得尤为重要。然而,MCI和AD早期的临床表现并不突出,且实验室检查也缺乏足够的特异性,当临床医生做出明确诊断时,多数患者已处于AD的中晚期。近年来,随着磁共振技术的不断发展,多种磁共振技术已广泛地应用于MCI和AD的研究中,并为MCI及AD的早期诊断提供了重要的影像学依据。本文分别从结构性磁共振(s MRI)、静息态f MRI、磁共振弥散张量成像(DTI)、磁共振波谱成像(MRS)、磁敏感加权成像(SWI)及MRI分子影像几个方面,阐述多种磁共振技术在MCI和AD研究中的进展。  相似文献   

16.
Liu J  Qin W  Yuan K  Li J  Wang W  Li Q  Wang Y  Sun J  von Deneen KM  Liu Y  Tian J 《PloS one》2011,6(10):e23098

Background

The majority of previous heroin cue-reactivity functional magnetic resonance imaging (fMRI) studies focused on local function impairments, such as inhibitory control, decision-making and stress regulation. Our previous studies have demonstrated that these brain circuits also presented dysfunctional connectivity during the resting state. Yet few studies considered the relevance of resting state dysfunctional connectivity to task-related neural activity in the same chronic heroin user (CHU).

Methodology/Principal Findings

We employed the method of graph theory analysis, which detected the abnormality of brain regions and dysregulation of brain connections at rest between 16 male abstinent chronic heroin users (CHUs) and 16 non-drug users (NDUs). Using a cue-reactivity task, we assessed the relationship between drug-related cue-induced craving activity and the abnormal topological properties of the CHUs'' resting networks. Comparing NDUs'' brain activity to that of CHUs, the intensity of functional connectivity of the medial frontal gyrus (meFG) in patients'' resting state networks was prominently greater and positively correlated with the same region''s neural activity in the heroin-related task; decreased functional connectivity intensity of the anterior cingulate cortex (ACC) in CHUs at rest was associated with more drug-related cue-induced craving activities.

Conclusions

These results may indicate that there exist two brain systems interacting simultaneously in the heroin-addicted brain with regards to a cue-reactivity task. The current study may shed further light on the neural architecture that supports craving responses in heroin dependence.  相似文献   

17.
Image-guided, spatially localized 31P magnetic resonance spectroscopy (MRS) was used to study in vivo murine cardiac metabolism under resting and dobutamine-induced stress conditions. Intravenous dobutamine infusion (24 mug. min-1. kg body wt-1) increased the mean heart rate by approximately 39% from 482 +/- 46 per min at baseline to 669 +/- 77 per min in adult mice. The myocardial phosphocreatine (PCr)-to-ATP (PCr/ATP) ratio remained unchanged at 2.1 +/- 0.5 during dobutamine stress, compared with baseline conditions. Therefore, we conclude that a significant increase in heart rate does not result in a decline in the in vivo murine cardiac PCr/ATP ratio. These observations in very small mammals, viz., mice, at extremely high heart rates are consistent with studies in large animals demonstrating that global levels of high-energy phosphate metabolites do not regulate in vivo myocardial metabolism during physiologically relevant increases in cardiac work.  相似文献   

18.
Li CX  Wang Y  Gao H  Pan WJ  Xiang Y  Huang M  Lei H 《Neurochemical research》2008,33(11):2342-2349
Many previous in vivo 1H magnetic resonance spectroscopy (MRS) studies have shown that patients with major depressive disorder (MDD) are associated with perturbations of cerebral metabolism of neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA). In this study, we investigated the changes of cerebral metabolism in a depression-like rat model of chronic forced swimming stress (CFSS). The aims are to further understand the pathophysiological mechanisms underlying CFSS treatment, and to further establish the face and predictive validity of the CFSS model. The results showed that, relative to control, the CFSS rats had significantly reduced Glu, taurine and glutamate + glutamine (Glx) levels in the PFC, and significantly reduced N-acetyl aspartate (NAA) level, Glu level and Glu/GABA ratio in the hippocampus. Taking together, these results suggest that CFSS treatment can induce region-specific changes in the metabolism of Glu. The CFSS model might be used to study antidepressants specifically targeting the central glutamatergic system. Chun-Xia Li and Yaqiang Wang contributed equally to this work.  相似文献   

19.
Luo C  Guo ZW  Lai YX  Liao W  Liu Q  Kendrick KM  Yao DZ  Li H 《PloS one》2012,7(5):e36568
A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.  相似文献   

20.
In vivo magnetic resonance spectroscopy (MRS) studies of glial brain tumours reported that higher grade of astrocytoma is associated with increased level of choline-containing compounds (Cho) and decreased levels of N-acetylaspartate (NAA) and creatine and phosphocreatine (Cr). In this work, we studied the metabolism of glioma tumours by in vitro proton magnetic resonance spectroscopy (1H-MRS). 1H-MR spectra were recorded in vitro from perchloric acid extracts of astrocytoma (WHO II) and glioblastoma multiforme (WHO IV) samples. We observed differences between astrocytoma and glioblastoma multiforme in the levels of Cho, alanine, lactate, NAA, and glutamate/glutamine. In astrocytoma samples, we found higher MR signal of NAA and lower signal of Cho and alanine. MR spectra of glioblastoma samples reported significantly higher levels of lactate and glutamate/glutamine. In contrast, levels of Cr were the same in both tumour types. We also determined NAA/Cr and Cho/Cr ratios in the tumour samples. The NAA/Cr ratio was higher in astrocytomas than in glioblastomas multiforme. Conversely, the Cho/Cr ratio was higher in glioblastoma multiforme. The results indicate that MRS is a promising method for distinguishing pathologies in human brain and for pre-surgical grading of brain tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号