首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at http://www.mouse-phenotype.org/. Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.  相似文献   

2.
3.
作为一种高级认知活动,视觉功能减弱是否影响听觉恐惧条件化学习目前还不清楚.本文以突变体rd/rd、cl/cl小鼠为视觉功能减弱组,研究视觉功能减弱是否对听觉巴甫洛夫条件化恐惧反应有影响.在恐惧条件化、恐惧消退和消除记忆再现阶段记录了僵直行为.研究结果表明,视觉功能的减弱更有利于小鼠听觉恐惧条件化的建立.文中讨论了出现此...  相似文献   

4.
5.
In this protocol, social motivation is measured in mice through a pair of operant conditioning paradigms. To conduct the experiments, two-chambered shuttle boxes were equipped with two operant levers (left and right) and a food receptacle in one chamber, which was then divided from the second chamber by an automated guillotine door covered by a wire grid. Different stimulus mice, rotated across testing days, served as a social stimulus behind the wire grid, and were only visible following the opening of the guillotine door. Test mice were trained to lever press in order to open the door and gain access to the stimulus partner for 15 sec. The number of lever presses required to obtain the social reward progressively increased on a fixed schedule of 3. Testing sessions ended after test mice stopped lever pressing for 5 consecutive minutes. The last reinforced ratio or breakpoint can be used as a quantitative measure of social motivation. For the second paradigm, test mice were trained to discriminate between left and right lever presses in order to obtain either a food reward or the social reward. Mice were rewarded for every 3 presses of each respective lever. The number of food and social rewards can be compared as a measurement of the value placed upon each reward. The ratio of each reward type can also be compared between mouse strains and the change in this ratio can be monitored within testing sessions to measure satiation with a given reward type. Both of these operant conditioning paradigms are highly useful for the quantification of social motivation in mouse models of autism and other disorders of social behavior.  相似文献   

6.
Synapsin III is a neuron‐specific phosphoprotein that plays an important role in synaptic transmission and neural development. While synapsin III is abundant in embryonic brain, expression of the protein in adults is reduced and limited primarily to the hippocampus, olfactory bulb and cerebral cortex. Given the specificity of synapsin III to these brain areas and because it plays a role in neurogenesis in the dentate gyrus, we investigated whether it may affect learning and memory processes in mice. To address this point, synapsin III knockout mice were examined in a general behavioral screen, several tests to assess learning and memory function, and conditioned fear. Mutant animals displayed no anomalies in sensory and motor function or in anxiety‐ and depressive‐like behaviors. Although mutants showed minor alterations in the Morris water maze, they were deficient in object recognition 24 h and 10 days after training and in social transmission of food preference at 20 min and 24 h. In addition, mutants displayed abnormal responses in contextual and cued fear conditioning when tested 1 or 24 h after conditioning. The synapsin III knockout mice also showed aberrant responses in fear‐potentiated startle. As synapsin III protein is decreased in schizophrenic brain and because the mutant mice do not harbor obvious anatomical deficits or neurological disorders, these mutants may represent a unique neurodevelopmental model for dissecting the molecular pathways that are related to certain aspects of schizophrenia and related disorders.  相似文献   

7.
Negatively reinforced olfactory conditioning has been widely employed to identify learning and memory genes, signal transduction pathways and neural circuitry in Drosophila. To delineate the molecular and cellular processes underlying reward-mediated learning and memory, we developed a novel assay system for positively reinforced olfactory conditioning. In this assay, flies were involuntarily exposed to the appetitive unconditioned stimulus sucrose along with a conditioned stimulus odour during training and their preference for the odour previously associated with sucrose was measured to assess learning and memory capacities. After one training session, wild-type Canton S flies displayed reliable performance, which was enhanced after two training cycles with 1-min or 15-min inter-training intervals. Higher performance scores were also obtained with increasing sucrose concentration. Memory in Canton S flies decayed slowly when measured at 30 min, 1 h and 3 h after training; whereas, it had declined significantly at 6 h and 12 h post-training. When learning mutant t beta h flies, which are deficient in octopamine, were challenged, they exhibited poor performance, validating the utility of this assay. As the Drosophila model offers vast genetic and transgenic resources, the new appetitive conditioning described here provides a useful tool with which to elucidate the molecular and cellular underpinnings of reward learning and memory. Similar to negatively reinforced conditioning, this reward conditioning represents classical olfactory conditioning. Thus, comparative analyses of learning and memory mutants in two assays may help identify the molecular and cellular components that are specific to the unconditioned stimulus information used in conditioning.  相似文献   

8.
Reaching for and retrieving objects require precise and coordinated motor movements in the forelimb. When mice are repeatedly trained to grasp and retrieve food rewards positioned at a specific location, their motor performance (defined as accuracy and speed) improves progressively over time, and plateaus after persistent training. Once such reaching skill is mastered, its further maintenance does not require constant practice. Here we introduce a single-pellet reaching task to study the acquisition and maintenance of skilled forelimb movements in mice. In this video, we first describe the behaviors of mice that are commonly encountered in this learning and memory paradigm, and then discuss how to categorize these behaviors and quantify the observed results. Combined with mouse genetics, this paradigm can be utilized as a behavioral platform to explore the anatomical underpinnings, physiological properties, and molecular mechanisms of learning and memory.  相似文献   

9.
10.
Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.  相似文献   

11.
12.
Honeybees (Apis mellifera) are well known for their communication and orientation skills and for their impressive learning capability1,2. Because the survival of a honeybee colony depends on the exploitation of food sources, forager bees learn and memorize variable flower sites as well as their profitability. Forager bees can be easily trained in natural settings where they forage at a feeding site and learn the related signals such as odor or color. Appetitive associative learning can also be studied under controlled conditions in the laboratory by conditioning the proboscis extension response (PER) of individually harnessed honeybees3,4. This learning paradigm enables the study of the neuronal and molecular mechanisms that underlie learning and memory formation in a simple and highly reliable way5-12. A behavioral pharmacology approach is used to study molecular mechanisms. Drugs are injected systemically to interfere with the function of specific molecules during or after learning and memory formation13-16.Here we demonstrate how to train harnessed honeybees in PER conditioning and how to apply drugs systemically by injection into the bee flight muscle.  相似文献   

13.
The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively.The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal.  相似文献   

14.
15.
We injected small interfering RNAs (siRNAs) directly into the hippocampus of wild-type mice, knocking down expression of cyclic AMP responsive element-binding protein (CREB) and disrupting long-term, but not short-term, memory after both contextual and trace fear conditioning. In contrast, similar knockdown of siRNA for protein phosphatase 1 (PP1) was sufficient to enhance contextual and temporal memory formation, thereby demonstrating with such a gain-of-function effect a lack of any general deleterious effect for this method of RNAi-mediated gene knockdown. Our findings clearly confirm that contextual memory formation involves CREB and PP1 as positive and negative regulators, respectively, and show for the first time that temporal memory formation shares this mechanism. More generally, we establish that direct injection of siRNA into identified adult brain regions yields specific gene knockdowns, which can be used to validate in vivo candidate genes involved in behavioral plasticity.  相似文献   

16.
17.
Studying the behavior of genetic background strains provides important information for the design and interpretation of cognitive phenotypes in mutant mice. Our experiments examined the performance of three commonly used strains (C57BL/6J, 129S6, DBA/2J) on three behavioral tests for learning and memory that measure very different forms of memory, and for which there is a lack of data on strain differences. In the social transmission of food preference test (STFP) all three strains demonstrated intact memory for an odor-cued food that had been sampled on the breath of a cagemate 24 hours previously. While C57BL/6J and 129S6 mice showed good trace fear conditioning, DBA/2J mice showed a profound deficit on trace fear conditioning. In the Barnes maze test for spatial memory, the 129S6 strain showed poor probe trial performance, relative to C57BL/6J mice. Comparison of strains for open field exploratory activity and anxiety-like behavior suggests that poor Barnes maze performance reflects low exploratory behavior, rather than a true spatial memory deficit, in 129S6 mice. This interpretation is supported by good Morris water maze performance in 129S6 mice. These data support the use of a C57BL/6J background for studying memory deficits in mutant mice using any of these tasks, and the use of a 129S6 background in all but the Barnes maze. A DBA/2J background may be particularly useful for investigating the genetic basis of emotional memory using fear conditioning.  相似文献   

18.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.  相似文献   

19.
Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females.  相似文献   

20.
Rodents have been traditionally used as a standard animal model in laboratory experiments involving a myriad of sensory, cognitive, and motor tasks. Higher cognitive functions that require precise control over sensorimotor responses such as decision-making and attentional modulation, however, are typically assessed in nonhuman primates. Despite the richness of primate behavior that allows multiple variants of these functions to be studied, the rodent model remains an attractive, cost-effective alternative to primate models. Furthermore, the ability to fully automate operant conditioning in rodents adds unique advantages over the labor intensive training of nonhuman primates while studying a broad range of these complex functions.Here, we introduce a protocol for operantly conditioning rats on performing working memory tasks. During critical epochs of the task, the protocol ensures that the animal''s overt movement is minimized by requiring the animal to ''fixate'' until a Go cue is delivered, akin to nonhuman primate experimental design. A simple two alternative forced choice task is implemented to demonstrate the performance. We discuss the application of this paradigm to other tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号