首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs1,2,3,4,5. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential6,7,8. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens.We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km2 vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol9,10. The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction9.Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality11, a PCR for identification of Anopheles gambiae sibling species10 and a nested PCR for typing of Plasmodium falciparum infection12. Comparison using DNA quality (ND4) PCR showed 93% sensitivity and 82% specificity for the Chelex approach relative to the established salting out protocol. Corresponding values of sensitivity and specificity were 100% and 78%, respectively, using sibling species identification PCR and 92% and 80%, respectively for P. falciparum detection PCR. There were no significant differences in proportion of samples giving amplicon signal with the Chelex or the regular salting out protocol across all three PCR applications. The Chelex approach required three simple reagents and 37 min to complete, while the salting out protocol entailed 10 different reagents and 2 hr and 47 min'' processing time, including an overnight step. Our results show that the Chelex method is comparable to the existing salting out extraction and can be substituted as a simple and sustainable approach in resource-limited settings where a constant reagent supply chain is often difficult to maintain.  相似文献   

2.
Z. Aras  U.S. Uçan 《Theriogenology》2010,74(4):658-662
The aim of this study was to standardize and evaluate a PCR assay for the detection of Brucella canis (B. canis) in lymph node samples of naturally infected dogs. The performance of the PCR was compared with the results of bacteriological culture as reference method. Forty-eight inguinal lymph node samples were collected from 48 dogs (18 males and 30 females) that died in the city's pound in the years 2007-2008 and were examined by microbiological culture and the PCR assay. B. canis was isolated from 4 (8.3%) of 48 lymph node samples. Forty-four (91.7%) of the samples were bacteriological culture negative. B. canis DNA was directly detected from all culture positive lymph node samples (n = 4) by PCR. All of the culture negative samples were confirmed as negative by PCR. When the culture method was used as a gold standard, sensitivity and specificity of the PCR assay were found to be 100%. The limit of PCR detection of B. canis DNA was 1.4 × 101 CFU/g at least. In conclusion, the PCR assay has been shown to have a diagnostic performance equal to bacteriological culture for detection of B. canis. By a non-hazardous protocol for laboratory workers, the assay can be performed in one day.  相似文献   

3.
Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing “dominant negative mutant” versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or “leaky” expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV’s replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrep III-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.  相似文献   

4.
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.  相似文献   

5.
Centromeres are critically important for chromosome stability and integrity. Most eukaryotes have regional centromeres that include long tracts of repetitive DNA packaged into pericentric heterochromatin. Neocentromeres, new sites of functional kinetochore assembly, can form at ectopic loci because no DNA sequence is strictly required for assembly of a functional kinetochore. In humans, neocentromeres often arise in cells with gross chromosome rearrangements that rescue an acentric chromosome. Here, we studied the properties of centromeres in Candida albicans, the most prevalent fungal pathogen of humans, which has small regional centromeres that lack pericentric heterochromatin. We functionally delimited centromere DNA on Chromosome 5 (CEN5) and then replaced the entire region with the counter-selectable URA3 gene or other marker genes. All of the resulting cen5Δ::URA3 transformants stably retained both copies of Chr5, indicating that a functional neocentromere had assembled efficiently on the homolog lacking CEN5 DNA. Strains selected to maintain only the cen5Δ::URA3 homolog and no wild-type Chr5 homolog also grew well, indicating that neocentromere function is independent of the presence of any wild-type CEN5 DNA. Two classes of neocentromere (neoCEN) strains were distinguishable: “proximal neoCEN” and “distal neoCEN” strains. Neocentromeres in the distal neoCEN strains formed at loci about 200–450 kb from cen5Δ::URA3 on either chromosome arm, as detected by massively parallel sequencing of DNA isolated by CENP-ACse4p chromatin immunoprecipitation (ChIP). In the proximal neoCEN strains, the neocentromeres formed directly adjacent to cen5Δ::URA3 and moved onto the URA3 DNA, resulting in silencing of its expression. Functional neocentromeres form efficiently at several possible loci that share properties of low gene density and flanking repeated DNA sequences. Subsequently, neocentromeres can move locally, which can be detected by silencing of an adjacent URA3 gene, or can relocate to entirely different regions of the chromosome. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere.  相似文献   

6.
The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin‐RING ubiquitin ligase CUL‐2LRR‐1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC‐48 “unfoldase”. Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome‐associated TIMELESS‐TIPIN complex is required for CUL‐2LRR‐1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS‐TIPIN, CUL‐2LRR‐1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM‐7 subunit of CMG. Subsequently, the UBXN‐3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC‐48_UFD‐1_NPL‐4. We show that UBXN‐3 is important in vivo for replisome disassembly in the absence of TIMELESS‐TIPIN. Correspondingly, co‐depletion of UBXN‐3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN‐3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.  相似文献   

7.
The Direct PCR approach facilitates PCR amplification directly from small amounts of unpurified samples, and is demonstrated here for several plant and animal tissues (Figure 1). Direct PCR is based on specially engineered Thermo Scientific Phusion and Phire DNA Polymerases, which include a double-stranded DNA binding domain that gives them unique properties such as high tolerance of inhibitors.PCR-based target DNA detection has numerous applications in plant research, including plant genotype analysis and verification of transgenes. PCR from plant tissues traditionally involves an initial DNA isolation step, which may require expensive or toxic reagents. The process is time consuming and increases the risk of cross contamination1, 2. Conversely, by using Thermo Scientific Phire Plant Direct PCR Kit the target DNA can be easily detected, without prior DNA extraction. In the model demonstrated here, an example of derived cleaved amplified polymorphic sequence analysis (dCAPS)3,4 is performed directly from Arabidopsis plant leaves. dCAPS genotyping assays can be used to identify single nucleotide polymorphisms (SNPs) by SNP allele-specific restriction endonuclease digestion3. Some plant samples tend to be more challenging when using Direct PCR methods as they contain components that interfere with PCR, such as phenolic compounds. In these cases, an additional step to remove the compounds is traditionally required2,5. Here, this problem is overcome by using a quick and easy dilution protocol followed by Direct PCR amplification (Figure 1). Fifteen year-old oak leaves are used as a model for challenging plants as the specimen contains high amounts of phenolic compounds including tannins. Gene transfer into mice is broadly used to study the roles of genes in development, physiology and human disease. The use of these animals requires screening for the presence of the transgene, usually with PCR. Traditionally, this involves a time consuming DNA isolation step, during which DNA for PCR analysis is purified from ear, tail or toe tissues6,7. However, with the Thermo Scientific Phire Animal Tissue Direct PCR Kit transgenic mice can be genotyped without prior DNA purification. In this protocol transgenic mouse genotyping is achieved directly from mouse ear tissues, as demonstrated here for a challenging example where only one primer set is used for amplification of two fragments differing greatly in size.  相似文献   

8.
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA–protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo DNA polymerase (Pfu exo). The relative efficiency of Pfu exo was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo, while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.  相似文献   

9.
We here present an efficient, precise and reliable method to isolate and cultivate healthy and viable single Crithidia bombi cells from bumblebee faeces using flow cytometry. We report a precision of >99% in obtaining single trypanosomatid cells for further culture and analysis (“cloning”). In the study, we have investigated the use of different liquid media to cultivate C. bombi and present an optimal medium for obtaining viable clones from all tested, infected host donors. We show that this method can be applied to genotype a collection of clones from natural infections. Furthermore, we show how to cryo-preserve C. bombi cells to be revived to become infective clones after at least 4 years of storage. Considering the high prevalence of infections in natural populations, our method provides a powerful tool in studying the level and diversity of these infections, and thus enriches the current methodology for the studies of complex host-parasite interactions.  相似文献   

10.
Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the “model” fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of M. robertsii.  相似文献   

11.
This article describes the development of an improved method for the isolation of genomic fragments adjacent to a known DNA sequence based on a cassette ligation-mediated polymerase chain reaction (PCR) technique. To reduce the nonspecific amplification of PCR-based genome walking, the 3′ ends of the restriction enzyme-digested genomic DNA fragments were blocked with dideoxynucleoside triphosphate (ddNTP) and ligated with properly designed cassettes. The modified genomic DNA fragments flanked with cassettes were used as a template for the amplification of a target gene with a gene-specific primer (GSP) and a cassette primer (CP). The ddNTP blocking of the genomic DNA ends significantly reduced the nonspecific amplification and resulted in a simple and rapid walking along the genome. The efficiency of the template-blocking PCR method was confirmed by a carefully designed control experiment. The method was successfully applied for the cloning of the PGK1 promoter from Pichia ciferrii and two novel cellulase genes from Penicillium sp.  相似文献   

12.
We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the “Epsilonproteobacteria” related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 × 103 to 4.4 × 109 copies ml−1 or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 × 101 to 2.2 ×106 copies ml−1 or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml−1. The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.  相似文献   

13.
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.  相似文献   

14.

Background:

Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis.

Methods:

Five milliliter blood samples from healthy volunteers were spiked with 100-106 C. albicans cells to determine the detection limit of our method. DNA was extracted from whole blood using glass beads and the QIAamp DNA Blood Mini Kit (Qiagen, Hilden Germany). DNA from C. albicans isolates were amplified with primers and inserted into Escherichia coli (E. coli) DH5α.1 cells with the TA cloning vector (Invitrogen). The plasmid was used for standardization and optimization. A quantitative PCR assay with the LightCycler amplification and detection system based on fluorescence resonance energy transfer (FRET) with two different specific probes was established. To assess the precision and reproducibility of real-time PCR the intra-assay precision was determined in six consecutive assays.

Results:

No cross-reactivity of the hybridization probes with the DNA of non-C. albicans species or human genomic DNA was observed, which confirmed its 100% specificity. The minimum limit detected was one C. albicans cell or 100 CFU/ml (10 fg) per PCR reaction. The real-time PCR efficiency rate for Candida was high (E = 1.95). Melting curve analysis of C. albicans showed a specific melting peak temperature of 65.76 °C.

Conclusion:

The real-time PCR assay we developed is highly specific and sufficiently sensitive to detect the fungal load for early diagnosis of invasive candidiasis. Key Words: Invasive candidiasis, Real-time PCR, Candida albicans  相似文献   

15.
Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or “CELiD”, DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5×109 Sf9 cells, and 1–15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.  相似文献   

16.
The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL−1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL−1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes.  相似文献   

17.
18.
Aims: To develop a PCR‐based assay to detect Prototheca zopfii (P. zopfii) and its mastitis‐related subtype (genotype 2) directly from milk samples. Methods and Results: The DNA extraction method herein is based on the lysing properties of chemical agents, mechanical grinding and DNA‐binding properties of silica particles; this method was developed to rapidly extract DNA directly from P. zopfii in bovine milk. Two pairs of primers specific for P. zopfii and genotype 2 were used in the duplex PCR, and a sensitivity test showed that the detection level was 5 × 102 colony‐forming units (CFU) ml?1 for P. zopfii and 5 × 103 CFU ml?1 for genotype 2. Furthermore, a practical survey of 23 milk samples showed that the assay produced results that were in accordance with those obtained by the conventional microbiology method. Conclusions: The DNA extraction method is effective in isolating sufficient quantities of DNA from P. zopfii in milk for PCR analysis. The PCR assay is economical, sensitive and more rapid than the conventional culture method. Significance and Impact of the Study: The assay could be used as an alternative method for the rapid the detection of bovine mastitis resulting from P. zopfii genotype 2.  相似文献   

19.
Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its “codon-preferred” DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ∼2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10−8 m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids.  相似文献   

20.
Recently, several colony PCR methods have been developed to simplify DNA isolation procedure and facilitate PCR-based colony screening efforts in microalgae. A main drawback of current protocols is that cell collection, disruption, and genomic DNA extraction are required preceding the PCR step, making the colony PCR process laborious and costly. In the present study, we have developed a novel procedure that eliminates any steps of DNA extraction and allows the colony screening to be performed in a single PCR tube: algal cells (as low as 5,000) from agar plates or liquid cultures were directly transferred into a PCR tube containing 2× PCR buffer and boiled for 5–10 min depending on different algal strains, followed by addition of other PCR components (dNTPs, primers, and polymerase) and then subjected to conventional PCR reaction. The procedure documented here worked well not only for the model alga Chlamydomonas reinhardtii, but also for the thick-walled oleaginous strains such as Chlorella, Haematococcus, Nannochloropsis, and Scenedesmus with its efficacy independent on amplicon sizes and primer pairs. In addition, screening of Chlorella zofingiensis transformants was achieved using this method. Collectively, our single-tube colony PCR is a much simpler and more cost-effective procedure as compared to those previously reported and has broad applications including gene cloning, strain determination, and high-throughput screening of algae colonies and transformants for biomass and biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号