首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Modulation of NF-κB signalling by microbial pathogens   总被引:1,自引:0,他引:1  
  相似文献   

4.
Chemokine and chemokine receptor expression in gingival tissues plays a central role in periodontal disease during aging. In the present study, we explored the modulation of chemokines and chemokine receptors expression in aging rat gingival tissues. In the 24-month-old (Old) rat gingival tissues, RANTES and CCR5 mRNA and protein levels were 2–4 fold increased over those of the 6-month-old (Young) rats. The Old rats had considerable enhancement of all three of the studied MAPK activities: extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. These results suggest that age-related increases in RANTES and CCR5 expression are associated with increased IκBα, nuclear NF-κB, and MAPK activity in gingival tissues.  相似文献   

5.
Biological Trace Element Research - The diet is a major route of manganese (Mn) exposure for humans. Interestingly, several epidemiological data demonstrated an increase in the incidence of alcohol...  相似文献   

6.
The novel biological effect of statins in alleviating myocardium fibrosis following infarction has been increasingly recognized, yet the underlying mechanisms are not fully understood. The purpose of this study was to characterize the effect of simvastatin on myocardial fibrosis and collagen I deposition in the non-infarcted region after myocardial infarction (MI) and to identify the role of NF-κB and osteopontin in simvastatin-mediated inhibition of post-MI collagen over-expression. A rat model of MI was generated by ligating the left anterior descending coronary artery. The rats surviving the MI operation were randomly divided into the following 3 groups: myocardial infarction (MI, vehicle), simvastatin (Sim, 30 mg·kg-1·day-1), and pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB, 100 mg·kg-1·day-1). Four weeks after MI, cardiac function, mRNAs, and protein expression in non-infarcted myocardium were analyzed. Myocardial fibrosis and collagen I over-expression were observed following MI, accompanied by an increase of NF-κB and osteopontin. Simvastatin improved post-MI left ventricular dysfunction and ameliorated post-MI associated changes to several cardiac parameters, including the left ventricular end diastolic pressure (LVEDP), the maximal rate of pressure development (+dP/dtmax), and the maximal rate of pressure decline (-dP/dtmax). Concurrently, simvastatin significantly suppressed the over-expression of NF-κB, osteopontin, and collagen I in the non-infarcted region following MI. Inhibition of NF-κB by PDTC also reduced osteopontin over-expression and excessive collagen I production and improved the above functional myocardial parameters. These results show that post-MI myocardial fibrosis and collagen I over-expression in the non-infarcted region is associated with activation of NF-κB and osteopontin up-regulation. The anti-fibrotic effect of simvastatin following MI is associated with the attenuation of the expression of osteopontin and NF-κB. The inhibition of NF-κB activation could be the process upstream of osteopontin suppression in the simvastatin-mediated effect.  相似文献   

7.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

8.
Carrageenan (CGN) is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN) can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1) to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2) to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM) and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-α expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-κB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.  相似文献   

9.
Our aim was to evaluate the association between the expression and the polymorphism of TLR4/NF-κB pathways and colon cancer. TLR4 (rs4986790, rs10759932, rs10759931 and rs2770150) were genotyped in blood samples from Colorectal patients and healthy controls. TLR4 and cytokines inflammatory expression were evaluated by real time PCR on 40 matching normal and colon tissues and the protein level by Immunohistochemistry. The high level of TLR4 expression in colon cancer tissues is mainly due to infections by bacteria in the human colon and leads to induction of an acute secretion of inflammatory cytokines mediated by NF-κB. Also, we report here a clear evidence for an association between TLR4 rs10759931 polymorphism (OR = 0.086, CI: 0.04–0.18, P = <0.00001). This polymorphism affects the entire population without being specific to either gender or to any age group. In contrast, the rs2770150 is associated with colon cancer in women aged over 50 years and is closely linked with the decreased levels of female sex hormones during the post-menopausal period (OR = 0.188, CI: 0.074–0.48, P = <0.00084). rs10759932 and rs4986790 appear to have any association with colon cancer. Our data suggest that TLR4 SNPs could possibly serve as biomarkers for decision making in colon cancer treatment.  相似文献   

10.
NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5). We determined that the C5 cell clone has an average of 4 x 105 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6–6x105 molecules per cell) yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.  相似文献   

11.
Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.  相似文献   

12.
13.
14.
Imiquimod is known to exert its effects through Toll-like receptor 7 (TLR7) and/or TLR8, resulting in expression of proinflammatory cytokines and chemokines. Keratinocytes have not been reported to constitutively express TLR7 and TLR8, and the action of imiquimod is thought to be mediated by the adenine receptor, not TLR7 or TLR8. In this study, we revealed the expression of TLR7 in keratinocytes after calcium-induced differentiation. After addition of calcium to cultured keratinocytes, the immunological responses induced by imiquimod, such as activation of NF-κB and induction of TNF-α and IL-8, were more rapid and stronger. In addition, imiquimod induced the expression TLR7, and acted synergistically with calcium to induce proinflammatory cytokines. We confirmed that the responses induced by imiquimod were significantly inhibited by microRNAs suppressing TLR7 expression. These results suggest that TLR7 expressed in keratinocytes play key roles in the activation of NF-κB signaling by imiquimod, and that their modulation in keratinocytes could provide therapeutic potential for many inflammatory skin diseases.  相似文献   

15.
Shi  Ziqi  Guan  Naiyu  Sun  Weijiao  Sun  Tianzhi  Niu  Lingdi  Li  Jinyu  Ge  Junwei 《Probiotics and antimicrobial proteins》2022,14(5):830-844
Probiotics and Antimicrobial Proteins - Although the use of the probiotic bacterium Lactobacillus for the treatment and prevention of diseases caused by various pathogenic bacteria has received...  相似文献   

16.
Low dose methotrexate is the cornerstone for the treatment of rheumatoid arthritis. One of its major drawbacks is hepatotoxicity, resulting in poor compliance of therapy. Dissatisfied arthritis patients are likely to seek the option of complementary and alternative medicine such as bee venom. The combination of natural products with modern medicine poses the possibility of potential interaction between the two groups and needs investigation. The present study was aimed to investigate the modulatory effect of bee venom acupuncture on efficacy, toxicity, and pharmacokinetics and tissue disposition of methotrexate. Complete Freund''s adjuvant induced arthritic rats were treated for 3 weeks with methotrexate and/or bee venom. Arthritic score, ankle diameter, paw volume and tissue expression of NF-κB and TNF-α were determined to assess anti-arthritic effects, while anti-nociceptive effects were assessed by gait score and thermal hyperalgesia. Methotrexate toxicity was assessed by measuring serum TNF-α, liver enzymes and expression of NF-κB in liver. Combination therapy of bee venom with methotrexate significantly improved arthritic parameters and analgesic effect as compared to methotrexate alone. Bee venom ameliorated serum TNF-α and liver enzymes elevations as well as over expression of NF-κB in liver induced by methotrexate. Histological examination supported the results. And for the first time bee venom acupuncture was approved to increase methotrexate bioavailability with a significant decrease in its elimination. Conclusion: bee venom potentiates the anti-arthritic effects of methotrexate, possibly by increasing its bioavailability. Also, it provides a potent anti-nociceptive effect. Furthermore, bee venom protects against methotrexate induced hepatotoxicity mostly due to its inhibitory effect on TNF-α and NF-κB.  相似文献   

17.
18.
19.
20.
NF-κB in the Survival and Plasticity of Neurons   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号