首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.  相似文献   

3.
Gametocytocidal activities of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 were determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 h. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine was the most effective gametocytocidal drug against P. falciparum isolates KT1 and KT3 with 50% inhibitory concentration of 6 and 20 nM, respectively. Moreover, the 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harboring gametocytes. Prokaryotic (norfloxacin) and eukaryotic (amsacrine and etoposide) DNA topoisomerase II inhibitors were only effective against asexual but not sexual stages of the malaria parasites. Pyronaridine has both schizontocidal and gametocytocidal activities against the human malaria parasite, P. falciparum.  相似文献   

4.
Accumulating evidence has demonstrated the importance of alternative splicing in various physiological processes, including the development of different diseases. CDC-like kinases (CLKs) and serine-arginine protein kinases (SRPKs) are components of the splicing machinery that are crucial for exon selection. The discovery of small molecule inhibitors against these kinases is of significant value, not only to delineate the molecular mechanisms of splicing, but also to identify potential therapeutic opportunities. Here we describe a series of small molecules that inhibit CLKs and SRPKs and thereby modulate pre-mRNA splicing. Treatment with these small molecules (Cpd-1, Cpd-2, or Cpd-3) significantly reduced the levels of endogenous phosphorylated SR proteins and caused enlargement of nuclear speckles in MDA-MB-468 cells. Additionally, the compounds resulted in splicing alterations of RPS6KB1 (S6K), and subsequent depletion of S6K protein. Interestingly, the activity of compounds selective for CLKs was well correlated with the activity for modulating S6K splicing as well as growth inhibition of cancer cells. A comprehensive mRNA sequencing approach revealed that the inhibitors induced splicing alterations and protein depletion for multiple genes, including those involved in growth and survival pathways such as S6K, EGFR, EIF3D, and PARP. Fluorescence pulse-chase labeling analyses demonstrated that isoforms with premature termination codons generated after treatment with the CLK inhibitors were degraded much faster than canonical mRNAs. Taken together, these results suggest that CLK inhibitors exhibit growth suppression and apoptosis induction through splicing alterations in genes involved in growth and survival. These small molecule inhibitors may be valuable tools for elucidating the molecular machinery of splicing and for the potential development of a novel class of antitumor agents.  相似文献   

5.
6.
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria.  相似文献   

7.
Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps.  相似文献   

8.
BackgroundUnderstanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission.Methodology/Principal findingsPlasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44–94% for P. falciparum and from 23–72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37–100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398).Conclusions/SignificanceInterventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling.  相似文献   

9.
The discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P. falciparum gametocytes, the parasite stage responsible for transmission. This study reports screening results for the Tres Cantos Antimalarial Set (TCAMS), of approximately 13,533 molecules, against P. falciparum stage V gametocytes. Secondary confirmation and cytotoxicity assays led to the identification of 98 selective molecules with dual activity against gametocytes and asexual stages. Hit compounds were chemically clustered and analyzed for appropriate physicochemical properties. The TCAMS chemical space around the prioritized hits was also studied. A selection of hit compounds was assessed ex vivo in the standard membrane feeding assay and demonstrated complete block in transmission. As a result of this effort, new chemical structures not connected to previously described antimalarials have been identified. This new set of compounds may serve as starting points for future drug discovery programs as well as tool compounds for identifying new modes of action involved in malaria transmission.  相似文献   

10.
Gametocytes of the protozoan Plasmodium falciparum ensure malaria parasite transmission from humans to the insect vectors. In their development, they produce the abundant specific protein Pfg27, the function and in vivo molecular interactions of which are unknown. Here we reveal a previously unreported localisation of Pfg27 in the gametocyte nucleus by immunoelectron microscopy and studies with HaloTag and Green Fluorescent Protein fusions, and identify a network of interactions established by the protein during gametocyte development. We report the ability of endogenous Pfg27 to form oligomeric complexes that are affected by phosphorylation of the protein, possibly through the identified phosphorylation sites, Ser32 and Thr208. We show that Pfg27 binds RNA molecules through specific residues and that the protein interacts with parasite RNA-binding proteins such as EF1α and PfH45. We propose a structural model for Pfg27 oligomerisation, based on the sequence and structural conservation here recognised between Pfg27 and sterile alpha motif. This study provides a molecular basis for Pfg27 to establish an interaction network with RNA and RNA-binding proteins and to govern its dynamic oligomerisation in developing gametocytes.  相似文献   

11.
12.
13.
14.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

15.
DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.  相似文献   

16.
17.
Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA), can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP) stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG) inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+) is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.  相似文献   

18.
Palmitoylation is the post‐translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate‐Histidine‐Histidine‐Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl‐transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont‐expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite‐specific organelles such as the rhoptries and inner membrane complex. Knock‐out studies identified individual DHHCs that may be essential for blood‐stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood‐stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission‐blocking target. The localization and stage‐specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.  相似文献   

19.
Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) – Isoleucine (I) – Lysine (K) – Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite’s ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号