首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2′-O positions of the viral RNA cap (GpppA-RNA → m7GpppA-RNA → m7GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Å resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.  相似文献   

7.
8.
9.
10.
Li ML  Rao P  Krug RM 《The EMBO journal》2001,20(8):2078-2086
The cap-dependent endonuclease of the influenza viral RNA polymerase, which produces the capped RNA primers that initiate viral mRNA synthesis, is comprised of two active sites, one for cap binding and one for endonuclease cleavage.We identify the amino acid sequences that constitute these two active sites and demonstrate that they are located on different polymerase subunits. Binding of the 5' terminal sequence of virion RNA (vRNA) to the polymerase activates a tryptophan-rich, cap-binding sequence on the PB2 subunit. At least one of the tryptophans functions in cap binding, indicating that this active site is probably similar to that of other known cap-binding proteins. Endonuclease cleavage, which is activated by the subsequent binding of the 3' terminal sequence of vRNA, resides in a PB1 sequence that contains three essential acidic amino acids, similar to the active sites of other enzymes that cut polynucleotides to produce 3'-OH ends. These results, coupled with those of our previous study, provide a molecular map of the five known essential active sites of the influenza viral polymerase.  相似文献   

11.
12.
13.
14.
15.
16.
17.
甲型流感病毒的RNA聚合酶由PB1、PB2和PA 三个亚基组成,在病毒的生命周期中负责行使病毒基因组的转录与复制等多方面功能. 甲型流感病毒由于频繁变异,导致其对传统抗病毒药物的敏感性降低,因此开发疗效好、针对性强、毒性低的新型抗病毒药物已成为当前亟待解决的问题.由于RNA聚合酶是甲型流感病毒生命周期重要的调控蛋白,并且编码聚合酶各亚基的基因序列具有高度保守性,故成为当前抗病毒药物的重要靶点.  相似文献   

18.
The hepatitis C virus (HCV) NS5b protein is an RNA-dependent RNA polymerase essential for replication of the viral RNA genome. In vitro and presumably in vivo, NS5b initiates RNA synthesis by a de novo mechanism. Different structural elements of NS5b have been reported to participate in RNA synthesis, especially a so-called “β-flap” and a C-terminal segment (designated “linker”) that connects the catalytic core of NS5b to a transmembrane anchor. High concentrations of GTP have also been shown to stimulate de novo RNA synthesis by HCV NS5b. Here we describe a combined structural and functional analysis of genotype 1 HCV-NS5b of strains H77 (subtype 1a), for which no structure has been previously reported, and J4 (subtype 1b). Our results highlight the linker as directly involved in lifting the first boundary to processive RNA synthesis, the formation of the first dinucleotide primer. The transition from this first dinucleotide primer state to processive RNA synthesis requires removal of the linker and of the β-flap with which it is shown to strongly interact in crystal structures of HCV NS5b. We find that GTP specifically stimulates this transition irrespective of its incorporation in neosynthesized RNA.  相似文献   

19.
Peptide-mediated interference with influenza A virus polymerase   总被引:4,自引:0,他引:4       下载免费PDF全文
The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.  相似文献   

20.
Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3′ end of a guanine (G) base in RNA. The G specificity is exhibited by the native influenza polymerase complex associated with viral ribonucleoprotein particles and is conferred by an intrinsic G specificity of the isolated PA endonuclease domain PA-Nter. In addition, RNA cleavage site choice by the full polymerase is also guided by cap binding to the PB2 subunit, from which RNA cleavage preferentially occurs at the 12th nt downstream of the cap. However, if a G residue is present in the region of 10–13 nucleotides from the cap, cleavage preferentially occurs at G. This is the first biochemical evidence of influenza polymerase PA showing intrinsic sequence selective endonuclease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号