首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53 (mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMAluciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3 (R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过si RNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以...  相似文献   

3.
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.  相似文献   

4.
5.
6.
7.
8.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and devastating human malignancies. In about 70% of PDACs the tumor suppressor gene TP53 is mutated generally resulting in conformational changes of mutant p53 (mutp53) proteins, which acquire oncogenic functions triggering aggressiveness of cancers and alteration of energetic metabolism. Here, we demonstrate that mutant p53 prevents the nuclear translocation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) stabilizing its cytoplasmic localization, thus supporting glycolysis of cancer cells and inhibiting cell death mechanisms mediated by nuclear GAPDH. We further show that the prevention of nuclear localization of GAPDH is mediated by both stimulation of AKT and repression of AMPK signaling, and is associated with the formation of the SIRT1:GAPDH complex. By using siRNA-GAPDH or an inhibitor of the enzyme, we functionally demonstrate that the maintenance of GAPDH in the cytosol has a critical impact on the anti-apoptotic and anti-autophagic effects driven by mutp53. Furthermore, the blockage of its mutp53-dependent cytoplasmic stabilization is able to restore the sensitivity of PDAC cells to the treatment with gemcitabine. Finally, our data suggest that mutp53-dependent enhanced glycolysis permits cancer cells to acquire sensitivity to anti-glycolytic drugs, such as 2-deoxyglucose, suggesting a potential personalized therapeutic approach in human cancers carrying mutant TP53 gene.  相似文献   

9.
Missense mutations in TP53 resulting in the expression of p53-R175H, p53-R273H, or p53-R280K are frequently detected in human breast cancer. Currently, the role of mutant p53-R280K in breast cancer is relatively unknown, and therefore, the present study analyzed the function of mutant p53-R280K in breast cancer cell growth. To this end, we used small interfering RNA to study the role of mutant p53-R280K in MDA-MB-231 cells, which endogenously express the mutant protein. We found that curcumin induced apoptosis in MDA-MB-231 cells and downregulated mutant p53-R280K. We also observed that knockdown of mutant p53 by small interfering RNA induced apoptosis in MDA-MB-231 cells. Curcumin-induced apoptosis was further enhanced by the overexpression of wild-type p53, but was decreased by mutant p53-R280K overexpression. Our findings indicate that mutant p53-R280K has an important role in mediating the survival of triple-negative breast cancer MDA-MB-231 cells. Furthermore, this study suggests mutant p53-R280K could be used as a therapeutic target for breast cancer cells harboring this TP53 missense mutation.  相似文献   

10.

Purpose

Inactivation of TP53, which occurs predominantly by missense mutations in exons 4–9, is a major genetic alteration in a subset of human cancer. In spite of growing evidence that gain-of-function (GOF) mutations of p53 also have oncogenic activity, little is known about the clinical relevance of these mutations.

Methods

The clinicopathological features of high-grade serous ovarian carcinoma (HGS-OvCa) patients with GOF p53 mutations were evaluated according to a comprehensive somatic mutation profile comprised of whole exome sequencing, mRNA expression, and protein expression profiles obtained from the Cancer Genome Atlas (TCGA).

Results

Patients with a mutant p53 protein (mutp53) with a GOF mutation showed higher p53 mRNA and protein expression levels than patients with p53 mutation with no evidence of GOF (NE-GOF). GOF mutations were more likely to occur within mutational hotspots, and at CpG sites, and resulted in mutp53 with higher functional severity (FS) scores. Clinically, patients with GOF mutations showed a higher frequency of platinum resistance (22/58, 37.9%) than patients with NE-GOF mutations (12/56, 21.4%) (p=0.054). Furthermore, patients with GOF mutations were more likely to develop distant metastasis (36/55, 65.5%) than local recurrence (19/55, 34.5%), whereas patients with NE-GOF mutations showed a higher frequency of locoregional recurrence (26/47, 55.3%) than distant metastasis (21/47, 44.7%) (p=0.035). There were no differences in overall or progression-free survival between patients with GOF or NE-GOF mutp53.

Conclusion

This study demonstrates that patient with GOF mutp53 is characterized by a greater likelihood of platinum treatment resistance and distant metastatic properties in HGS-OvCa.  相似文献   

11.
Stephanie Fanucchi 《FEBS letters》2009,583(22):3557-3562
A novel survival role of focal adhesion kinase (FAK) that involves its nuclear translocation and direct association with p53 has been demonstrated. Here we examined the relationship between the p53/FAK interaction and Ser46 phosphorylation of p53 (p-p53Ser46) in the apoptotic regulation of human esophageal squamous cell carcinoma (HOSCC) cell lines, expressing either wild type (wt) p53 or mutant (mt) p53-R175H. In contrast to the wt p53 cell lines, the mt p53-R175H cell line was resistant to staurosporine (STS)-mediated detachment and caspase-3 activation. Furthermore, despite the resistance of mt p53-R175H to Ser46 phosphorylation, both wt and mt HOSCC cells translocate FAK into the nucleus and maintain the p53/FAK interaction post STS treatment. These findings provide unique insight into how tumor cells harboring the R175H mutant may resist chemotherapeutic intervention.

Structured summary

MINT-7294020: FAK (uniprotkb:Q05397) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti-bait coimmunoprecipitation (MI:0006)  相似文献   

12.
13.
Mutant p53 proteins not only lose their tumor-suppressor function but some acquire oncogenic gain of function (GOF). The published mutp53 knock-in (KI) alleles (R172H, R270H, R248W) manifest GOF by broader tumor spectrum and more metastasis compared with the p53-null allele, but do not shorten survival. However, whether GOF also occurs with other mutations and whether they are all biologically equal is unknown. To answer this, we created novel humanized mutp53 KI mice harboring the hot spot alleles R248Q and G245S. Intriguingly, their impact was very different. Compared with p53-null mice, R248Q/− mice had accelerated onset of all tumor types and shorter survival, thus unprecedented strong GOF. In contrast, G245S/− mice were similar to null mice in tumor latency and survival. This was associated with a twofold higher T-lymphoma proliferation in R248Q/− mice compared with G245S/− and null mice. Moreover, R248Q/− hematopoietic and mesenchymal stem cells were expanded relative to G245S/− and null mice, the first indication that GOF also acts by perturbing pretumorous progenitor pools. Importantly, these models closely mirror Li–Fraumeni patients who show higher tumor numbers, accelerated onset and shorter tumor-free survival by 10.5 years when harboring codon R248Q mutations as compared with Li–Fraumeni patients with codon G245S mutations or p53 deletions/loss. Conversely, both KI alleles caused a modest broadening of tumor spectrum with enhanced Akt signaling compared with null mice. These models are the first in vivo proof for differential oncogenic strength among p53 GOF alleles, with genotype–phenotype correlations borne out in humans.  相似文献   

14.
p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53+/+, MMTV-Hras/p53-/-, and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53+/+ mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53+/+ tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53.  相似文献   

15.
Recent reports suggest that an early region 1B (E1B) 55,000-molecular-weight polypeptide (55K)-null adenovirus type 5 (Ad5) mutant (dl1520) can replicate to the same extent as wild-type (wt) Ad5 in cells either deficient or mutated in p53, implicating p53 in limiting viral replication in vivo. In contrast, we show here that the replicative capacity of Ad5 dl1520 is wholly independent of host cell p53 status, as is the replicative capacity of comparable Ad12 E1B 54K-null adenoviruses (Ad12 dl620 and Ad12 hr703). Furthermore, we show that there is no requirement for complex formation between p53 and Ad5 E1B 55K or Ad12 E1B 54K for a productive infection, such that wt Ad5 and wt Ad12 will both replicate in cells which are null for p53. In addition, we find that these Ad5 and Ad12 mutant viruses induce S phase irrespective of the p53 status of the cell and that, therefore, S-phase induction does not correlate with the replicative capacity of the virus. Interestingly, the replicative capacities of the large E1B-null adenoviruses correlated positively with the ability to express E1B 19K and were related to the ability to repress premature adenovirus-induced apoptosis. Infection of primary human cells indicated that Ad5 dl1520, wt Ad5, and wt Ad12 replicated better in cycling normal human skin fibroblasts (HSFs) than in quiescent HSFs. Thus, the cell cycle status of the host cell, upon infection, also influences viral yield.  相似文献   

16.
Mutant p53 (mutp53) cancers are surprisingly dependent on their hyperstable mutp53 protein for survival, identifying mutp53 as a potentially significant clinical target. However, exploration of effective small molecule therapies targeting mutp53 has barely begun. Mutp53 hyperstabilization, a hallmark of p53 mutation, is cancer cell-specific and due to massive upregulation of the HSP90 chaperone machinery during malignant transformation. We recently showed that stable complex formation between HSP90 and its mutp53 client inhibits E3 ligases MDM2 and CHIP, causing mutp53 stabilization. Histone deacetylase (HDAC) inhibitors (HDACi) are a new class of promising anti-cancer drugs, hyperacetylating histone and non-histone targets. Currently, suberoylanilide hydroxamic acid (SAHA) is the only FDA-approved HDACi. We show that SAHA exhibits preferential cytotoxicity for mutant, rather than wild-type and null p53 human cancer cells. Loss/gain-of-function experiments revealed that although able to exert multiple cellular effects, SAHA's cytotoxicity is caused to a significant degree by its ability to strongly destabilize mutp53 at the level of protein degradation. The underlying mechanism is SAHA's inhibition of HDAC6, an essential positive regulator of HSP90. This releases mutp53 and enables its MDM2- and CHIP-mediated degradation. SAHA also strongly chemosensitizes mutp53 cancer cells for chemotherapy due to its ability to degrade mutp53. This identifies a novel action of SAHA with the prospect of SAHA becoming a centerpiece in mutp53-specific anticancer strategies.  相似文献   

17.
In its wild-type form, p53 is a major tumor suppressor whose function is critical for protection against cancer. Many human tumors carry missense mutations in the TP53 gene, encoding p53. Typically, the affected tumor cells accumulate excessive amounts of the mutant p53 protein. Various lines of evidence indicate that, in addition to abrogating the tumor suppressor functions of wild-type p53, the common types of cancer-associated p53 mutations also endow the mutant protein with new activities that can contribute actively to various stages of tumor progression and to increased resistance to anticancer treatments. Collectively, these activities are referred to as mutant p53 gain-of-function. This article addresses the biological manifestations of mutant p53 gain-of-function, the underlying molecular mechanisms, and their possible clinical implications.Mutations in the TP53 gene, encoding the p53 tumor suppressor, are arguably the most frequent type of gene-specific alterations in human cancer. This attests to the centrality of p53 as a major mainstay in the body’s built-in anticancer defense mechanisms. Not surprisingly, this pivotal role of the wild-type p53 (wtp53) protein in tumor suppression has attracted many researchers to study it in detail, resulting in an avalanche of information and publications. One might expect that, similar to other tumor suppressor genes, the sole outcome of mutations in the TP53 gene will be loss of wtp53 function, characteristically manifested as total lack of p53 expression or production of unstable or truncated mutant proteins. Yet, quite strikingly, the vast majority of cancer-associated p53 mutations actually lead to production of full length protein, typically with only a single amino acid substitution, which tends to accumulate in the tumor cells and reach steady-state levels that greatly exceed those of wtp53 in noncancerous cells (Rotter 1983). This remarkable feature has suggested early on in p53 research that cancer-associated mutant p53 (mutp53) isoforms may be more than just relics of wtp53 inactivation, and may instead play distinctive roles in the tumor cells.In principle, emergence of a p53 mutation within a cell might have three, not mutually exclusive, types of outcome (Michalovitz et al. 1991; Sigal and Rotter 2000; Weisz et al. 2007b). First, such mutation is expected to abrogate the tumor suppressor function of the affected TP53 allele, reducing the overall capacity of the cell to mount a proper p53 response; if both alleles eventually become mutated, or if the remaining allele is lost, such cells will be totally deprived of anticancer protection by p53. Second, many common mutp53 isoforms can exert dominant–negative effects over coexpressed wtp53, largely by forming mixed tetramers that are incapable of DNA binding and transactivation. Hence, even if one wt allele is retained, the cell may be rendered practically devoid of wtp53 function through such mechanism, particularly if the mutant protein is expressed in excess over its wt counterpart. Third, and most relevant for this article, the emergent mutp53 protein might possess activities of its own, often not present in the original wtp53 protein, which can actively contribute to various aspects of tumor progression. Such activities, commonly described as mutp53 gain-of-function (GOF), are the subject of this article. Several recent reviews address in detail the various aspects of mutp53 GOF (Brosh and Rotter 2009; Donzelli et al. 2008; Lozano 2007; Olivier et al. 2009; Peart and Prives 2006; Petitjean et al. 2007; Song and Xu 2007; Strano et al. 2007; Weisz et al. 2007b). Therefore, we focus here mainly on general principles as well as on some of the more recent findings.  相似文献   

18.
19.
20.
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25–35% increase of cells in G1. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G1 arrest. Furthermore, co-expression of p53, RAX/PACT and the dominant-negative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G1 growth arrest and expression of RAX/PACT in pkr+/+ but not pkr−/− MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G1 cell cycle arrest.Key words: p53, PKR, RAX, PACT, Ubc9, sumoylation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号