首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amano T  Gascuel J 《PloS one》2012,7(4):e33922
Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.  相似文献   

3.
Main olfactory receptor genes were isolated from a seawater fish, Fugu rubripes (pufferfish), and characterized. Two subfamilies of genes encoding seven transmembrane receptors were identified; one consists of five or more members, termed FOR1-1 to 5 of FOR1 subfamily, and the other appears to be a single copy gene, termed the FOR2 subfamily. FOR1 members show extremely high amino acid sequence similarities of about 95% to one another, and are distantly related to catfish-1 with the highest similarity of 37%. FOR2 shows 43% similarity to goldfish-A28. Phylogenically, both FOR members are categorized among pedigrees of the fish main olfactory receptor family outside the mammalian receptor family, although similarities between Fugu receptors and those of fresh-water fishes are lower than those among fresh-water fishes. In situ hybridization shows that both subfamilies of receptor genes are expressed randomly over the olfactory epithelium throughout all developmental stages, and no segregation of the signals was found. On the other hand, when three members of a vomeronasal olfactory receptor gene family, related to the Ca(2+)-sensing receptor, were used as probes, they were also randomly expressed over the same epithelium as the main olfactory receptors. This is in contrast to the expression profiles observed for zebrafish and goldfish, where the main or vomeronasal olfactory receptors are expressed in segregated patterns. It is thus suggested that the expression pattern of fish olfactory receptors varies depending on the species, although fish olfactory receptors are highly related to one another in their primary structures, and are phylogenically distinct from those of mammals.  相似文献   

4.
5.
Rodriguez I  Feinstein P  Mombaerts P 《Cell》1999,97(2):199-208
The vomeronasal system mediates pheromonal effects in mammals. We have employed gene targeting technology to introduce mutations in a putative pheromone receptor gene, VR2, in the germline of mice. By generating alleles differentially tagged with the histological markers taulacZ and tauGFP, we show that VR2 is monoallelically expressed in a given neuron. Axons of VR2-expressing neurons converge onto numerous glomeruli in the accessory olfactory bulb. The pattern of axonal projections is complex and variable. This wiring diagram is substantially different from that of the main olfactory system. The projection pattern is disrupted by deleting the coding region of VR2, but an unrelated seven-transmembrane protein, the odorant receptor M71, can partially substitute for VR2.  相似文献   

6.
7.
The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors. To scrutinize its presumptive olfactory nature, the GG was assessed for receptor expression by extensive RT-PCR analyses, leading to the identification of a distinct vomeronasal receptor which was expressed in the majority of OMP-positive GG neurones. Along with this receptor, these cells expressed the G proteins Go and Gi, both of which are also present in sensory neurones of the vomeronasal organ. Odorant receptors were expressed by very few cells during prenatal and perinatal stages; a similar number of cells expressed adenylyl cyclase type III and G(olf/s), characteristic signalling elements of the main olfactory system. The findings of the study support the notion that the GG is in fact a subunit of the complex olfactory system, comprising cells with either a VNO-like or a MOE-like phenotype. Moreover, expression of a vomeronasal receptor indicates that the GG might serve to detect pheromones.  相似文献   

8.

Background  

Olfactory receptor (OR) genes were discovered more than a decade ago, when Buck and Axel observed that, in rats, certain G-protein coupled receptors are expressed exclusively in the olfactory epithelium. Subsequently, protein sequence similarity was used to identify entire OR gene repertoires of a number of mammalian species, but only in mouse were these predictions followed up by expression studies in olfactory epithelium. To rectify this, we have developed a DNA microarray that contains probes for most predicted human OR loci and used that array to examine OR gene expression profiles in olfactory epithelium tissues from three individuals.  相似文献   

9.
10.
11.
12.
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.  相似文献   

13.
The molecular logic of olfaction in Drosophila   总被引:1,自引:0,他引:1  
Drosophila fruit flies display robust olfactory-driven behaviors with an olfactory system far simpler than that of vertebrates. Endowed with 1300 olfactory receptor neurons, these insects are able to recognize and discriminate between a large number of distinct odorants. Candidate odorant receptor molecules were identified by complimentary approaches of differential cloning and genome analysis. The Drosophila odorant receptor (DOR) genes encode a novel family of proteins with seven predicted membrane-spanning domains, unrelated to vertebrate or nematode chemosensory receptors. There are on the order of 60 or more members of this gene family in the Drosophila genome, far fewer than the hundreds to thousands of receptors found in vertebrates or nematodes. DOR genes are selectively expressed in small subsets of olfactory neurons, in expression domains that are spatially conserved between individuals, bilaterally symmetric and not sexually dimorphic. Double in situ RNA hybridization with a number of pairwise combinations of DOR genes fails to reveal any overlap in gene expression, suggesting that each olfactory neuron expresses one or a small number of receptor genes and is therefore functionally distinct. How is activation of such a subpopulation of olfactory receptor neurons in the periphery sensed by the brain? In the mouse, all neurons expressing a given receptor project with precision to two of 1800 olfactory bulb glomeruli, creating a spatial map of odor quality in the brain. We have employed DOR promoter transgenes that recapitulate expression of endogenous receptor to visualize the projections of individual populations of receptor neurons to subsets of the 43 glomeruli in the Drosophila antennal lobe. The results suggest functional conservation in the logic of olfactory discrimination from insects to mammals.  相似文献   

14.
Progress in the functional studies of human olfactory receptors has been largely hampered by the lack of a reliable experimental model system. Although transgenic approaches in mice could characterize the function of individual olfactory receptors, the presence of over 300 functional genes in the human genome becomes a daunting task. Thus, the characterization of individuals with a genetic susceptibility to altered olfaction coupled with the absence of particular olfactory receptor genes will allow phenotype/genotype correlations and vindicate the function of specific olfactory receptors with their cognate ligands. We characterized a 118 kb β-globin deletion and found that its 3' end breakpoint extends to the neighboring olfactory receptor region downstream of the β-globin gene cluster. This deletion encompasses six contiguous olfactory receptor genes (OR51V1, OR52Z1, OR51A1P, OR52A1, OR52A5, and OR52A4) all of which are expressed in the brain. Topology analysis of the encoded proteins from these olfactory receptor genes revealed that OR52Z1, OR52A1, OR52A5, and OR52A4 are predicted to be functional receptors as they display integral characteristics of G-proteins coupled receptors. Individuals homozygous for the 118 kb β-globin deletion are afflicted with β-thalassemia due to a homozygous deletion of the β-globin gene and have no alleles for the above mentioned olfactory receptors genes. This is the first example of a homozygous deletion of olfactory receptor genes in human. Although altered olfaction remains to be ascertained in these individuals, such a study can be carried out in β-thalassemia patients from Malaysia, Indonesia and the Philippines where this mutation is common. Furthermore, OR52A1 contains a γ-globin enhancer, which was previously shown to confer continuous expression of the fetal γ-globin genes. Thus, the hypothesis that β-thalassemia individuals, who are homozygous for the 118 kb deletion, may also have an exacerbation of their anemia due to the deletion of two copies of the γ-globin enhancer element is worthy of consideration.  相似文献   

15.
To date, over 100 vomeronasal receptor type 1 (V1R) genes have been identified in rodents. V1R is specifically expressed in the rodent vomeronasal organ (VNO) and is thought to be responsible for pheromone reception. Recently, 21 putatively functional V1R genes were identified in the genome database of the amphibian Xenopus tropicalis. Amphibians are the first vertebrates to possess a VNO. In order to determine at which point during evolution the vertebrate V1R genes began to function in the vomeronasal system, we analyzed the expression of all putatively functional V1R genes in Xenopus olfactory organs. We found that V1R expression was not detected in the VNO but was specifically detected in the main olfactory epithelium (MOE). We also observed that V1R-expressing cells in the MOE coexpressed Gi2, thus suggesting that the V1R-Gi2-mediated signal transduction pathway, which is considered to play an important role in pheromone reception in the rodent VNO, exists in the amphibian MOE. These results suggest that V1R-mediated signal transduction pathway functions in Xenopus main olfactory system.  相似文献   

16.
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.  相似文献   

17.
The mammalian olfactory system utilizes three large receptor families: the olfactory receptors (ORs) of the main nose and the vomeronasal type-1 and type-2 receptor genes (V1Rs and V2Rs) of the vomeronasal organ. We find that these loci are among the most long interspersed nuclear element (LINE)-dense regions of mammalian genomes. We investigate two evolutionary models to account for this cohabitation. First, we investigate an adaptive selection model, in which LINEs have contributed to expansions of mouse V1R repertoires. We find that even evolutionarily stable V1R loci are exceptionally LINE-rich compared to other genome loci, including loci containing other large gene clusters. Also, a more detailed analysis of specific V1R duplications does not reveal LINE patterns predicted by common LINE-mediated duplication mechanisms. Next, we investigate neutral models, in which LINEs were tolerated by, but not advantageous for, surrounding V1R genes. We find that V1R loci are exceptionally LINE-rich compared to other regions of similar AT base composition, and that duplicated V1R gene blocks are generally depleted of LINE elements, suggesting that these loci did not become densely populated with LINEs simply as a consequence of targeted integration or passive multiplication along with the genes. Finally, we show that individual LINE repeats of a given age at V1R, V2R, and OR loci exhibit a significantly longer average length than at other autosomal loci, suggesting a reduced tendency for these LINEs to be disrupted. We speculate that LINEs at V1R, V2R, and OR loci might be selectively retained because they contribute to allelic regulation of these three gene families. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Olfactory receptors of the OR37 subfamily are characterized by distinct sequence features and are expressed in neurons segregated in a restricted area of the olfactory epithelium. In the present study, we have characterized the complement of OR37-like genes in the mouse. Five OR37-like genes were identified. They reside within only 60kb of DNA on chromosome 4. About 70kb distant from this cluster, two additional olfactory receptor genes are located, which are members of distinct receptor subfamilies. Phylogenetic analysis demonstrated that the two physically linked receptors are closely related to the OR37 subfamily. Studies of gene expression showed that both genes are also expressed in clustered neuron populations located in the typical OR37 region of the epithelium. These data suggest the involvement of locus-dependent mechanisms for the spatial control of OR gene expression.  相似文献   

19.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号