首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies.  相似文献   

3.
Mechanical force significantly modulates both inflammation and fibrosis, yet the fundamental mechanisms that regulate these interactions remain poorly understood. Here we performed microarray analysis to compare gene expression in mechanically loaded wounds vs. unloaded control wounds in an established murine hypertrophic scar (HTS) model. We identified 853 mechanically regulated genes (false discovery rate <2) at d 14 postinjury, a subset of which were enriched for T-cell-regulated pathways. To substantiate the role of T cells in scar mechanotransduction, we applied the HTS model to T-cell-deficient mice and wild-type mice. We found that scar formation in T-cell-deficient mice was reduced by almost 9-fold (P < 0.001) with attenuated epidermal (by 2.6-fold, P < 0.01) and dermal (3.9-fold, P < 0.05) proliferation. Mechanical stimulation was highly associated with sustained T-cell-dependent Th2 cytokine (IL-4 and IL-13) and chemokine (MCP-1) signaling. Further, T-cell-deficient mice failed to recruit systemic inflammatory cells such as macrophages or monocytic fibroblast precursors in response to mechanical loading. These findings indicate that T-cell-regulated fibrogenic pathways are highly mechanoresponsive and suggest that mechanical forces induce a chronic-like inflammatory state through immune-dependent activation of both local and systemic cell populations.  相似文献   

4.
Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.  相似文献   

5.
Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK-ERK-MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.  相似文献   

6.
Recent evidence suggests that mechanical forces can significantly impact the biologic response to injury. Integrated mechanical and chemical signaling networks have been discovered that enable physical cues to regulate disease processes such as pathologic scar formation. Distinct molecular mechanisms control how tensional forces influence wound healing and fibrosis. Conceptual frameworks to understand cutaneous repair have expanded beyond traditional cell-cytokine models to include dynamic interactions driven by mechanical force and the extracellular matrix. Strategies to manipulate these biomechanical signaling networks have tremendous therapeutic potential to reduce scar formation and promote skin regeneration.  相似文献   

7.
Immunohistochemical localization of growth factors in fetal wound healing   总被引:26,自引:0,他引:26  
Fetal wound healing occurs rapidly, in a regenerative fashion, and without scar formation, by contrast with adult wound healing, where tissue repair results in scar formation which limits tissue function and growth. The extracellular matrix deposited in fetal wounds contains essentially the same structural components as that in the adult wound but there are distinct differences in the spatial and temporal distribution of these components. In particular the organization of collagen in the healed fetal wound is indistinguishable from the normal surrounding tissue. Rapidity of healing, lack of an inflammatory response, and an absence of neovascularization also distinguish fetal from adult wound healing. The mechanisms controlling these differing processes are undefined but growth factors may play a critical role. The distribution of growth factors in healing fetal wounds is unknown. We have studied, by immunohistochemistry, the localization of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and basic fibroblast growth factor (bFGF), in fetal, neonatal, and adult mouse lip wounds. TGF beta and bFGF were present in neonatal and adult wounds, but were not detected in the fetal wounds, while PDGF was present in fetal, neonatal, and adult wounds. This pattern correlates with the known effects in vitro of these factors, the absence of an inflammatory response and neovascularization in the fetal wound, and the patterns of collagen deposition in both fetal and adult wounds. The results suggest that it may be possible to manipulate the adult wound to produce more fetal-like, scarless, wound healing.  相似文献   

8.
Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery.  相似文献   

9.
The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage.  相似文献   

10.
Mechanical forces influence the induction, growth and maintenance of the vertebrate skeleton. Using the zebrafish, Danio rerio, we explore the hypothesis that mechanical forces can ultimately lead to the generation of skeletal evolutionary novelties by modifications of the mechano‐responsive molecular pathways. Locomotion and feeding in zebrafish larvae begin early in ontogeny and it is likely that forces incurred during these behaviours affect subsequent skeletal development. We provide two case studies in which our hypothesis is being tested: the kinethmoid and intermuscular bones. The kinethmoid is a synapomorphy for the order Cypriniformes and is intricately linked to the bones of the protrusible upper jaw. It undergoes chondrogenesis within a ligament well after muscular forces are present within the head. Subsequent ossification of the kinethmoid occurs at sites of ligamentous attachment, leading us to believe that mechanical forces are involved. Unlike the kinethmoid, which has evolved only once, intermuscular bones have evolved several times during teleostean evolution. Intermuscular bones are embedded within the myosepta, the collagenous sheets between axial muscles. The effect of mechanical forces on the development of these intermuscular bones is experimentally tested by increasing the viscosity of the water in which larval zebrafish are raised. Since locomotion in high viscosity requires greater muscular forces, we can directly test the influence of mechanical forces on the development of intermuscular bones. Using developmental techniques paired with outgroup comparison for the kinethmoid, and direct experimentation for intermuscular bones, our case studies provide complementary insights into the effects of mechanical forces on the evolution of skeletal novelties in fishes.  相似文献   

11.
Scarless fetal wound healing: a basic science review   总被引:1,自引:0,他引:1  
SUMMARY: Scar formation is a major medical problem that can have devastating consequences for patients. The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. Despite extensive investigation, the exact mechanisms of scarless fetal wound healing remain largely unknown. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. These differences may have important implications in scarless wound repair.  相似文献   

12.
Chen G  Wen JD  Tinoco I 《RNA (New York, N.Y.)》2007,13(12):2175-2188
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.  相似文献   

13.
The extracellular matrix of lip wounds in fetal, neonatal and adult mice.   总被引:28,自引:0,他引:28  
Wound healing in the fetus occurs rapidly, by a regenerative process and without an inflammatory response, resulting in complete restitution of normal tissue function. By contrast, in the adult, wounds heal with scar formation, which may impair function and inhibit further growth. The cellular mechanisms underlying these differing forms of wound healing are unknown but the extracellular matrix (ECM), through its effects on cell function, may play a key role. We have studied the ECM in upper lip wounds of adult, neonatal and fetal mice at days 14, 16 and 18 of gestation. The spatial and temporal distribution of collagen types I, III, IV, V and VI, fibronectin, tenascin, laminin, chondroitin and heparan sulphates were examined immunohistochemically. Results from the fetal groups were essentially similar whilst there were distinct differences between fetus, neonate and adult. Fibronectin was present at the surface of the wound in all groups at 1 h post-wounding. Tenascin was also present at the wound surface but the time at which it was first present differed between fetus (1 h), neonate (12 h) and adult (24 h). The time of first appearance paralleled the rate of wound healing which was most rapid in the fetus and slowest in the adult. Tenascin inhibits the cell adhesion effect of fibronectin and during development the appearance of tenascin correlates with the initiation of cell migration. During wound healing the appearance of tenascin preceded cell migration and the rapid closure of fetal wounds may be due to the early appearance of tenascin in the wound. Collagen types I, III, IV, V and VI were present in all three wound groups but the timing and pattern of collagen deposition differed, with restoration of the normal collagen pattern in the fetus and a scar pattern in the adult. This confirms that lack of scarring in fetal wounds is due to the organisation of collagen within the wound and not simply lack of collagen formation. The distribution of chondroitin sulphate differed between normal fetal and adult tissues and between fetal and adult wounds. Its presence in the fetal wound may alter collagen fibril formation. No inflammatory response was seen in the fetal wounds. The differences in the ECM of fetal and adult wounds suggests that it may be possible to alter the adult wound so that it heals by a fetal-like process without scar formation, loss of tissue function or restriction of growth.  相似文献   

14.
Fetal wounds pass from scarless repair to healing with scar formation during gestation. This transition depends on both the size of the wound and the gestational age of the fetus. This study defines the transition period in the fetal rat model and provides new insight into scarless collagen wound architecture by using confocal microscopy. A total of 16 pregnant Sprague-Dawley rats were operated on. Open full-thickness wounds, 2 mm in diameter, were created on fetal rats at gestational ages 14.5 days (E14; n = 10), 16.5 days (E16; n = 42), and 18.5 days (E18; n = 42) (term = 21.5 days). Wounds were harvested at 24 (n = 18 per gestational age) and 72 hours (n = 24 per gestational age). Skin at identical gestational ages to wound harvest was used for controls. The wounds were fixed and stained with hematoxylin and eosin, antibody to type I collagen, and Sirius red for confocal microscopic evaluation. No E14 rat fetuses survived to wound harvest. Wounds created on E16 fetal rats healed completely and without scarring. E16 fetal rat hair follicle formation and collagen architecture was similar to that of normal, nonwounded skin. Wounds created on E18 fetal rats demonstrated slower healing; only 50 percent were completely healed at 72 hours compared with 100 percent of the E16 fetal rat wounds at 72 hours. Furthermore, the E18 wounds healed with collagen scar formation and without hair follicle formation. Confocal microscopy demonstrated that the collagen fibers were thin and arranged in a wispy pattern in E16 fetal rat wounds and in nonwounded dermis. E18 fetal rat wounds had thickened collagen fibers with large interfiber distances. Two-millimeter excisional E16 fetal rat wounds heal without scar formation and with regeneration of normal dermal and epidermal appendage architecture. E18 fetal rat wounds heal in a pattern similar to that of adult cutaneous wounds, with scar formation and absence of epidermal appendages. Confocal microscopy more clearly defined the dermal architecture in normal skin, scarless wounds, and scars. These data further define the transition period in the fetal rat wound model, which promises to be an effective system for the study of in vivo scarless wound healing.  相似文献   

15.

Burns are one of the most common injuries that are complicated by many challenges including infection, severe inflammatory response, excessive expression of proteases, and scar formation. The aim of this study was to investigate the effect of botulinum toxin type A (BO) and aprotinin (AP) separately or in combination (BO-AP) in healing process. Four burn wounds were created in each rat and randomly filled with silver sulfadiazine (SSD), BO, AP and BO-AP. The rats were euthanized after 7, 14, and 28 days, and their harvested wound samples were evaluated by gross pathology, histopathology, gene expression, biochemical testing, and scanning electron microscopy. Both BO and AP significantly reduced expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) at the 7th post wounding day. Moreover, they inhibited scar formation by reducing the TGF-β1 level and increasing basic fibroblast growth factor (bFGF) at the 28th day. AP by decreasing protease production showed more effective role than BO in wound regeneration. AP increased tissue organization and maturation and improved cosmetic appearance of wounds, at 28 days. The best results gained when combination of BO and AP were used in healing of burn wounds. Treatment by BO-AP significantly subsided inflammation compared to the BO, AP, and SSD treated wounds. Treatment with BO-AP also reduced collagen density and led to minimal scar formation. Combination of botulinum toxin type A and aprotinin considerably increased structural and functional properties of the healing wounds by reducing scar formation and decreasing production of proteases.

  相似文献   

16.
《Reproductive biology》2014,14(1):61-67
Cutaneous injury in the majority of vertebrate animals results in the formation of a scar in the post-injured area. Scar tissues, although beneficial for maintaining integrity of the post-wounded region often interferes with full recovery of injured tissues. The goal of wound-healing studies is to identify mechanisms to redirect reparative pathways from debilitating scar formation to regenerative pathways that lead to normal functionality. To perform such studies models of regeneration, which are rare in mammals, are required. In this review we discussed skin regenerative capabilities present in lower vertebrates and in models of skin scar-free healing in mammals, e.g. mammalian fetuses. However, we especially focused on the attributes of two unusual models of skin scar-free healing capabilities that occur in adult mammals, that is, those associated with nude, FOXN1-deficient mice and in wild-type African spiny mice.  相似文献   

17.
The ability of a fetus to heal without scar formation depends on its gestational age at the time of injury and the size of the wound defect. In general, linear incisions heal without scar until late in gestation whereas excisional wounds heal with scar at an earlier gestational age. The profiles of fetal proteoglycans, collagens, and growth factors are different from those in adult wounds. The less-differentiated state of fetal skin is probably an important characteristic responsible for scarless repair. There is minimal inflammation in fetal wounds. Fetal wounds are characterized by high levels of hyaluronic acid and its stimulator(s) with more rapid, highly organized collagen deposition. The roles of peptide growth factors such as transforming growth factor-beta and basic fibroblast growth factor are less prominent in fetal than in adult wound healing. Platelet-derived growth factor has been detected in scarless fetal skin wounds, but its role is unknown. An understanding of scarless tissue repair has possible clinical application in the modulation of adult fibrotic diseases and abnormal scar-forming conditions.  相似文献   

18.
Bone tissue forms and is remodeled in response to the mechanical forces that it experiences, a phenomenon described by Wolff's Law. Mechanically induced formation and adaptation of bone tissue is mediated by bone cells that sense and respond to local mechanical cues. In this review, the forces experienced by bone cells, the mechanotransduction pathways involved, and the responses elicited are considered. Particular attention is given to two cell types that have emerged as key players in bone mechanobiology: osteocytes, the putative primary mechanosensors in intact bone; and osteoprogenitors, the cells responsible for bone formation and recently implicated in ectopic calcification of cardiovascular tissues. Mechanoregulation of bone involves a complex interplay between these cells, their microenvironments, and other cell types. Thus, dissection of the role of mechanics in regulating bone cell fate and function, and translation of that knowledge to improved therapies, requires identification of relevant cues, multifactorial experimental approaches, and advanced model systems that mimic the mechanobiological environment.  相似文献   

19.
Saxena V  Hwang CW  Huang S  Eichbaum Q  Ingber D  Orgill DP 《Plastic and reconstructive surgery》2004,114(5):1086-96; discussion 1097-8
The mechanism of action of the Vacuum Assisted Closure Therapy (VAC; KCI, San Antonio, Texas), a recent novel innovation in the care of wounds, remains unknown. In vitro studies have revealed that cells allowed to stretch tend to divide and proliferate in the presence of soluble mitogens, whereas retracted cells remain quiescent. The authors hypothesize that application of micromechanical forces to wounds in vivo can promote wound healing through this cell shape-dependent, mechanical control mechanism. The authors created a computer model (finite element) of a wound and simulated VAC application. Finite element modeling is commonly used to engineer complex systems by breaking them down into simple discrete elements. In this model, the authors altered the pressure, pore diameter, and pore volume fraction to study the effects of vacuum-induced material deformations. The authors compared the morphology of deformation of this wound model with histologic sections of wounds treated with the VAC. The finite element model showed that most elements stretched by VAC application experienced deformations of 5 to 20 percent strain, which are similar to in vitro strain levels shown to promote cellular proliferation. Importantly, the deformation predicted by the model also was similar in morphology to the surface undulations observed in histologic cross-sections of the wounds. The authors hypothesize that this tissue deformation stretches individual cells, thereby promoting proliferation in the wound microenvironment. The application of micromechanical forces may be a useful method with which to stimulate wound healing through promotion of cell division, angiogenesis, and local elaboration of growth factors. Finite element modeling of the VAC device is consistent with this mechanism of action.  相似文献   

20.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号