首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundSchiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy.MethodsThe current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)− 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells.ResultsThe Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels.ConclusionIt can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.  相似文献   

2.
BackgroundDNA topoisomerase (Topo) inhibition plays key role in breast cancer treatment. Stephania hainanensis H. S. Lo et Y. Tsoong (S. hainanensis), a Li nationality plant that has abundant aporphine alkaloids, can inhibit Topo.PurposeTo identify a dual Topo inhibitor, a deep and systematic study of active aporphine alkaloids in S. hainanensis and their mechanisms of inhibiting breast cancer proliferation and Topo activity are essential.Study designThis study aimed to assess the anti-breast cancer and Topo inhibitory activities of oxocrebanine and explore the underlying mechanisms.MethodsThe growth inhibitory activities of 12 compounds in S. hainanensis were screened by MTT assay in MCF-7, SGC-7901, HepG-2 cells, and compared with the effects on human normal mammary epithelial MCF-10A cells as non cancer control cells. The Topo inhibitory activity was assessed by DNA relaxation and unwinding assays, kDNA decatenation assay and western blot. Cell cycle and autophagy analyses were carried out with flow cytometry and staining. Acridine orange staining and α-tubulin morphology were observed by fluorescence microscopy. Western blot was used to examine microtubule assembly dynamics and the expression levels of key proteins associated with DNA damage, autophagy and mitotic arrest.ResultsOxocrebanine was the anti-breast cancer active alkaloid in S. hainanensis. It exhibited the best inhibitory effect on MCF-7 cells with an IC50 of 16.66 μmol/l, and had only weak effect on the proliferation of MCF-10A cells. Oxocrebanine inhibited Topo I and II α in a cell-free system and in MCF-7 cells. The DNA unwinding assay suggested that oxocrebanine intercalated with DNA as a catalytic inhibitor. Oxocrebanine regulated the levels of Topo I and IIα and DNA damage-related proteins. Oxocrebanine led to the mitotic arrest, and these effects occurred through both p53-dependent and p53-independent pathways. Oxocrebanine induced autophagy, abnormal α-tubulin morphology and stimulated enhanced microtubule dynamics.ConclusionOxocrebanine was the anti-breast cancer active aporphine alkaloid in S. hainanensis. Oxocrebanine was a Topo I/IIα dual inhibitor, catalytic inhibitor and DNA intercalator. Oxocrebanine caused DNA damage, autophagy, and mitotic arrest in MCF-7 cells. Oxocrebanine also disrupted tubulin polymerization. Accordingly, oxocrebanine held a great potential for development as a novel dual Topo inhibitor for effective breast cancer treatment.  相似文献   

3.
A new series of Schiff base complexes [Fe(III), VO(II), Pd(II), Cu(II), and Ni(II)] has been developed. The ligand possesses bulky t-pentyl groups at the 3- and 5-positions. The iron (III) complex is obtained in monomeric form with a square-pyramidal configuration while the copper complex is with square-planar configuration.  相似文献   

4.
The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer.  相似文献   

5.
A series of surfactant–copper(II) Schiff base complexes (1–6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal?=?salicylaldehyde, 5-OMe-sal?=?5-methoxy- salicylaldehyde, and R2?=?dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant–copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.  相似文献   

6.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

7.
The complexes of Fe(II), Cd(II) and Zn(II) with Schiff base derived from 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared. Melting points, decomposition temperatures, Elemental analyses, TGA, conductance measurements, infrared (IR) and UV–Visible spectrophotometric studies were utilized in characterizing the compounds. The UV–Visible spectrophotometric analysis revealed 1:1 (metal-ligand) stoichiometry for the three complexes. In addition to, the prepared complexes have been used as precursors for preparing their corresponding metal oxides nanoparticles via thermal decomposition. The structures of the nano-sized complexes and their metal oxides were characterized by X-ray powder diffraction and transmittance electron microscopy. Moreover, the prepared Schiff base ligand, its complexes and their corresponding nano-sized metal oxides have been screened in vitro for their antibacterial activity against three bacteria, gram-positive (Microccus luteus) and gram-negative (Escherichia coli, Serratia marcescence) and three strains of fungus. The metal chelates were shown to possess more antimicrobial activity than the free Schiff-base chelate and their nano-sized metal oxides have the highest activity. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity mensuration and gel electrophoresis. The DNA binding constants reveal that all these complexes interact with DNA through intercalative binding mode. Furthermore, the cytotoxic activity of the prepared Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and hepatic cellular carcinoma cells, (HepG-2) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.  相似文献   

8.
Endometrial cancer (EC) is one of the most common types of gynecologic cancer of the female genital tract; it considered being the fourth leading death factor among other types of cancer. Therefore, developing new anti-cancer agents are crucial for cancer treatment. Based on the potential of Schiff based complexes for the induction of apoptosis, Schiff base compounds, and their metal complexes displayed excellent anticancer properties. In this current study, antiproliferative activity of [L(BF2)2] as a novel binuclear boron-fluoride complex was examined to preliminary research in eight different cell lines, HELA, DU-145, PC3, DLD-1, ECC-1, PNT1-A, HT-29, and MCF-7, it was found to have a potent, suppressive effect on human endometrial adenocarcinoma cell line ECC-1. Based on this data, later investigated its apoptotic, cytotoxic, and genotoxic properties on human endometrial adenocarcinoma cell line ECC-1 in different concentrations. Apoptotic and cytotoxic tests such as single cell gel electrophoresis assay (comet assay), DNA fragmentation laddering, acridine orange test for DNA damage, and ELISA for apoptotic measurement was performed. We also gauged the oxidative status by evaluating total antioxidant status (TAS) and total oxidant status (TOS). Oxidative stress index (OSI) was calculated too. As a result [L(BF2)2] has been found to have a marvelous effect on ECC-1 cells, especially in damaging their DNA and cause a series of reactions lead to apoptosis. Taken together, it suggests that the [L(BF2)2] complex can induce the apoptotic pathway of endometrial cancer cells and is a possible candidate for future cancer treatment studies.  相似文献   

9.
BackgroundIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.MethodsHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.ResultsIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Conclusions and general significanceAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.  相似文献   

10.
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.  相似文献   

11.
A new cytotoxic copper(II) complex with Schiff base ligand [CuII(5-Cl-pap)(OAc)(H2O)]·2H2O (1) (5-Cl-pap = N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine), was synthesized and structurally characterized by X-ray diffraction. Single-crystal analysis revealed that the copper atom shows a 4 + 1 pyramidal coordination, a water oxygen appears in the apical position, and three of the basal positions are occupied by the NNO tridentate ligand and the fourth by an acetate oxygen. The interaction of Schiff base copper(II) complex 1 with DNA was investigated by UV-visible spectra, fluorescence spectra and agarose gel electrophoresis. The apparent binding constant (Kapp) value of 6.40 × 105 M− 1 for 1 with DNA suggests moderate intercalative binding mode. This copper(II) complex displayed efficient oxidative cleavage of supercoiled DNA, which might indicate that the underlying mechanism involve hydroxyl radical, singlet oxygen-like species, and hydrogen peroxide as reactive oxygen species. In addition, our present work showed the antitumor effect of 1 on cell cycle and apoptosis. Flow cytometric analysis revealed that HeLa cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that complex 1 can induce apoptosis of HeLa cells, whose process was mediated by intrinsic mitochondrial apoptotic pathway owing to the activation of caspase-9 and caspase-3.  相似文献   

12.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

13.
We investigated DNA base damage in mammalian cells exposed to exogenous iron ions in culture. Murine hybridoma cells were treated with Fe(II) ions at concentrations of 10 μM, 100 μM, and 1 mM. Chromatin was isolated from treated and control cells and analyzed by gas chromatography/mass spectrometry for DNA base damage. Ten modified DNA bases were identified in both Fe(II)-treated and control cells. The quantification of modified bases was achieved by isotope-dilution mass spectrometry. In Fe(II)-treated cells, the amounts of modified bases were increased significantly above the background levels found in control cells. Dimethyl sulfoxide at concentrations up to 1 M in the culture medium did not significantly inhibit the formation of modified DNA bases. A mathematical simulation used to evaluate the plausibility of DNA damage upon Fe(II) treatment predicted a dose-dependent response, which agreed with the experimental results. In addition, Fe(II) treatment of cells increased the cell membrane permeability and caused production of lipid peroxides. The nature of DNA base lesions suggests the involvement of the hydroxyl radical in their formation. The failure of dimethyl sulfoxide to inhibit their formation indicates a site-specific mechanism for DNA damage with involvement of DNA-bound metal ions. Fe(II) treatment of cells may increase the intracellular iron ion concentration and/or cause oxidative stress releasing metal ions from their storage sites with subsequent binding to DNA. Identified DNA base lesions may be promutagenic and play a role in pathologic processes associated with iron ions.  相似文献   

14.
15.
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing α,α-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)]2 (ONNO2− = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)]2, but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis.  相似文献   

16.
BackgroundTopoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide (?NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide.MethodsHere, we have evaluated the roles of ?NO/?NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of ?NO on the ATPase activity of topo II.ResultsTreatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. ?NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells.ConclusionPPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells.General significanceAs tumors express nitric oxide synthase and generate ?NO, inhibition of topo II functions by ?NO/?NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.  相似文献   

17.
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.  相似文献   

18.
The condensation of (1H-benzimidazole-2-yl) methanamine, with 2-hydroxy naphthaldehyde lead to Schiff base ligand (H2L) (1). This was later reacted with metal salts (ZnCl2, CrCl3·6H2O, and MnCl2·4H2O) to afford the corresponding metal complexes. Biological activity findings indicate that the metal complexes have promising activity against Escherichia coli and Bacillus subtilis and modest activity against Aspergillus niger. The in vitro anticancer activities of Zn (II), Cr (III), and Mn (II) complexes were investigated and the best results were observed with Mn (II) complex as the most potent cytotoxic agent toward human cell lines colorectal adenocarcinoma HCT 116, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 with 0.7, 1.1 and 6.7 μg of inhibitory concentration IC50 values respectively. Consequently, the Mn (II) complex and ligand were docked inside the energetic site of ERK2 and exhibited favorable energy for binding. The investigation of biological tests towards mosquito larvae indicates that Cr (III) and Mn (II) complexes manifest strong toxicity against Aedes aegypti larvae with 3.458 and 4.764 ppm values of lethal concentration LC50, respectively.  相似文献   

19.
A series of reduced amino pyridine Schiff base platinum(II) complexes were prepared as potential anticancer drugs, and characterized by NMR, IR spectroscopy, elemental analysis, and molar conductivity. UV and CD results showed the binding mode between these compounds and salmon sperm DNA may be intercalation. The cytotoxicity of these complexes was validated against A549, Hela, and MCF-7 cell lines by MTT assay. Some complexes exhibited better cytotoxic activity than cisplatin against Hela and MCF-7 cell lines.  相似文献   

20.
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase β and flap endonuclease-1 by 4–6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号