首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
2.
3.
Two corticosteroid receptors have been cloned; they are the glucocorticoid receptor and the mineralocorticoid receptor. These receptors are members of the steroid/thyroid/retinoid receptor family of nuclear transactivating factors, which are characterized by two highly conserved zinc fingers in the central DNA binding domain, a COOH-terminal domain that encompasses the ligand binding site, and a variable NH(2)-terminal domain. In addition to these cloned receptors, other corticosteroid receptors have recently been identified in intestine. Steroid binding studies have identified two novel putative corticosteroid receptors in intestinal epithelia, and molecular cloning studies have detected two low-affinity receptors in small intestine that are activated by corticosteroids and induce CYP3A gene expression. This article focuses on the identification of these novel corticosteroid receptors and the potential role they may play in intestinal physiology.  相似文献   

4.
The present investigation was aimed at examining whether interaction of aldosterone with specific mineralocorticoid receptors at the level of the pituitary gland may account for the inhibitory effect of that steroid on ACTH secretion. By using pituitaries from neonatal rats, which we show to completely lack specific mineralocorticoid receptors but to contain a functional glucocorticoid receptor system, we demonstrated the persistence of aldosterone-induced inhibition of ACTH release from perifused glands. Conversely, when the glucocorticoid receptors sites were blocked in pituitaries from mature rats by means of a potent antiglucocorticoid (RU 38486), thus leaving unaltered mineralocorticoid binder, aldosterone no longer dampened hormonal output. We conclude that the latter steroid affected corticotropic activity by interacting not with its proper and specific receptor, but rather with the glucocorticoid binding sites.  相似文献   

5.
6.
7.
8.
Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.  相似文献   

9.
10.
11.
12.
13.
Steroid binding to cognate receptors is of high affinity. However, due to the appreciable homologies in the steroid-binding domains of receptors, this binding is hardly ever totally specific. We have recently obtained evidence that a vicinal dithiol group is involved in steroid binding to glucocorticoid receptors and that these vicinal dithiols are two of the three cysteines in the 16-kDa steroid-binding core. We now report that a comparison of the placement of cysteines in the comparable region of other receptors revealed a lack of similarly closely spaced thiols, which led to the prediction that arsenite would be totally selective in its interaction with glucocorticoid receptors. In fact, 100 microM arsenite inhibited all steroid binding to glucocorticoid receptors while having no effect on the binding of androgen, estrogen, mineralocorticoid, or progesterone receptors. Such total selectivity is not seen for selenite, which is another very potent inhibitor of glucocorticoid binding. This is the first report of absolute selectivity among steroid receptors that is based upon a known structural feature of the receptor protein. This selectivity of arsenite provides the easiest method to date for distinguishing between glucocorticoid and mineralocorticoid receptors and for selectively blocking steroid binding to glucocorticoid receptors in the assays of other receptors.  相似文献   

14.
Modulators are proposed to be novel ether aminophosphoglycerides that stabilize unoccupied and occupied glucocorticoid receptor steroid binding and inhibit glucocorticoid receptor complex activation. Two isoforms, modulator 1 and modulator 2, have been purified from rat liver cytosol [Bodine, P.V., & Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554]. Since the mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor function was examined. Warming of unoccupied receptor decreased residual specific [3H]aldosterone binding by 86 +/- 2%. Both modulator isoforms completely prevented this destabilization with Km's of 2 +/- 1 microM modulator 1 and 24 +/- 5 microM modulator 2. Warming of occupied mineralocorticoid receptors decreased [3H]aldosterone binding by 56 +/- 3%. Modulator only partially stabilized occupied receptor binding with Km's of 10 +/- 2 microM modulator 1 and 68 +/- 8 microM modulator 2. Modulator inhibited receptor activation with Km's of 3 +/- 1 microM modulator 1 and 33 +/- 10 microM modulator 2. Double-reciprocal analysis showed linear kinetics, and mixing modulator isoforms together had additive effects on unoccupied and occupied receptor steroid binding stabilization and activation inhibition. Colon cytosol contained a low molecular weight, heat-stable factor(s) which inhibited receptor activation and stabilized occupied receptor steroid binding. Molybdate completely stabilized unoccupied mineralocorticoid receptor steroid binding and inhibited activation with half-maximal effects at 3-4 mM but only stabilized occupied receptor binding by approximately 40%. These data indicate that (i) apparent physiologic concentrations of modulator stabilize mineralocorticoid receptor steroid binding and inhibit receptor activation, (ii) an aldosterone-responsive tissue contains a modulator-like activity, and (iii) molybdate mimics the effects of modulator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A steroid hormone responsive element (GRE/PRE), sufficient to confer glucocorticoid and progesterone inducibility when linked to a reporter gene, was used in band-shift assays to examine its molecular interactions with steroid hormone receptors. Both progesterone and glucocorticoid receptors bound directly and specifically to the GRE/PRE. The purine contact sites for both form A and form B chicken progesterone receptor, as well as those for rat glucocorticoid receptor, are identical. A peptide fragment produced in bacteria that primarily contain the DNA binding domain of the glucocorticoid receptor binds first to the TGTTCT half-site of the GRE/PRE, and a second molecule binds subsequently to the TGTACA (half-site) of the GRE/PRE in a cooperative manner. Utilizing the peptide fragment and the protein A-linked fragment, we demonstrated that the receptor interacts with its cognate enhancer as a dimer.  相似文献   

16.
17.
Cho S  Blackford JA  Simons SS 《Biochemistry》2005,44(9):3547-3561
The determinants of the partial agonist activity of most antisteroids complexed with steroid receptors are not well understood. We now examine the role of the N-terminal half of the glucocorticoid receptor (GR) including the activation domain (AF-1), the DNA binding site sequence, receptor contact with DNA, and coactivator binding on the expression of partial agonist activity in two cell lines for GRs bound by five antiglucocorticoids: dexamethasone mesylate (Dex-Mes), dexamethasone oxetanone (Dex-Ox), progesterone (Prog), deoxycorticosterone (DOC), and RU486. Using truncated GRs, we find that the N-terminal half of GR and the AF-1 domain are dispensable for the partial agonist activity of antiglucocorticoids. This contrasts with the AF-1 domain being required for the partial agonist activity of antisteroids with most steroid receptors. DNA sequence (MMTV vs a simple GRE enhancer) and cell-specific factors (CV-1 vs Cos-7) exert minor effects on the level of partial agonist activity. Small activity differences for some complexes of GAL4/GR chimeras with GR- vs GAL-responsive reporters suggest a contribution of DNA-induced conformational changes. A role for steroid-regulated coactivator binding to GRs is compatible with the progressively smaller increase in partial agonist activity of Dex-Mes > Prog > RU486 with added GRIP1 in CV-1 cells. This hypothesis is consistent with titration experiments, where low concentrations of GRIP1 more effectively increase the partial agonist activity of Dex-Mes than Prog complexes. Furthermore, ligand-dependent GRIP1 binding to DNA-bound GR complexes decreases in the order of Dex > Dex-Mes > Prog > RU486. Thus, the partial agonist activity of a given GR-steroid complex in CV-1 cells correlates with its cell-free binding of GRIP1. The ability to modify the levels of partial agonist activity through changes in steroid structure, DNA sequence, specific DNA-induced conformational changes, and coactivator binding suggests that useful variations in endocrine therapies may be possible by the judicious selection of these parameters to afford gene and tissue selective results.  相似文献   

18.
Glucocorticoids kill certain types of lymphoblasts, but the mechanisms are unknown. It is clear that sufficient numbers of functional glucocorticoid receptors are required to mediate lysis, but whether they do so through the classical model of steroid hormone activation and modulation of gene expression has not been established. In this report we have asked which region(s) of the steroid receptor are important for mediating lysis in leukemic T lymphoblasts. CEM-ICR 27 leukemic lymphoblasts, a clone of CEM cells which lack functional glucocorticoid receptors and therefore are neither lysed by dexamethasone nor capable of showing glutamine synthetase induction, were provided with steroid receptors by DNA transfections of various receptor gene constructs. We measured steroid mediated lysis, receptor number and induction of glutamine synthetase in the transfected cells. Our results provide evidence that the lysis mechanism in the ICR27 lymphoblasts is restored when functional receptor number is restored. The DNA binding region specifying high affinity for GRE sites is required. Lysis is mediated by any steroid that allows for activation of the receptor containing such a region. Our data support the view that steroid-mediated cell death occurs by a process requiring direct interaction of steroid-receptor complexes with the genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号