首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu L  Hu J  Lin D  Whitson R  Itakura K  Chen Y 《Biochemistry》2001,40(31):9142-9150
Mrf-2 is a member of a new class of DNA-binding proteins known as the AT-rich interaction domain family or ARID. Chemical shift indices and characteristic NOE values indicate that the three-dimensional structure of the Mrf-2 ARID in complex with DNA is nearly identical to that of the free protein. The backbone dynamics of the Mrf-2 domain free and in complex with DNA have been characterized by (15)N NMR relaxation measurements and model-free analysis. Chemical shift perturbations and dynamic studies suggest that two flexible interhelical loops, the flexible C-terminal tail, and one alpha-helix are involved in DNA recognition, indicating the importance of protein dynamics in DNA binding. Some well-structured regions, in particular the putative DNA-contacting helix, in Mrf-2 show a decrease in the order parameters (S(2)) upon complex formation. The less well-structured loops and the unstructured C-terminus show reduced flexibility upon DNA binding. In addition, the model-free analysis indicates motions on the picosecond to nanosecond and micro- to millisecond time scales at the DNA-binding surface of the bound Mrf-2 ARID, suggesting a model where interactions between the protein and DNA are highly dynamic.  相似文献   

2.
DNA-binding properties of ARID family proteins   总被引:7,自引:0,他引:7  
The ARID (A–T Rich Interaction Domain) is a helix–turn–helix motif-based DNA-binding domain, conserved in all eukaryotes and diagnostic of a family that includes 15 distinct human proteins with important roles in development, tissue-specific gene expression and proliferation control. The 15 human ARID family proteins can be divided into seven subfamilies based on the degree of sequence identity between individual members. Most ARID family members have not been characterized with respect to their DNA-binding behavior, but it is already apparent that not all ARIDs conform to the pattern of binding AT-rich sequences. To understand better the divergent characteristics of the ARID proteins, we undertook a survey of DNA-binding properties across the entire ARID family. The results indicate that the majority of ARID subfamilies (i.e. five out of seven) bind DNA without obvious sequence preference. DNA-binding affinity also varies somewhat between subfamilies. Site-specific mutagenesis does not support suggestions made from structure analysis that specific amino acids in Loop 2 or Helix 5 are the main determinants of sequence specificity. Most probably, this is determined by multiple interacting differences across the entire ARID structure.  相似文献   

3.
4.
Nucleotide‐binding domain leucine‐rich repeat‐containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N‐terminal pyrin domain which is central for complex formation and signal transduction. Recently, X‐ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem‐helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.  相似文献   

5.
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.  相似文献   

6.
7.
The ARID family of DNA binding proteins was first recognized approximately 5 years ago. The founding members, murine Bright and Drosophila dead ringer (Dri), were independently cloned on the basis of their ability to bind to AT-rich DNA sequences, although neither cDNA encoded a recognizable DNA binding domain. Mapping of the respective binding activities revealed a shared but previously unrecognized DNA binding domain, the consensus sequence of which extends across approximately 100 amino acids. This novel DNA binding domain was designated AT-rich interactive domain (ARID), based on the behavior of Bright and Dri. The consensus sequence occurs in 13 distinct human proteins and in proteins from all sequenced eukaryotic organisms. The majority of ARID-containing proteins were not cloned in the context of DNA binding activity, however, and their features as DNA binding proteins are only beginning to be investigated. The ARID region itself shows more diversity in structure and function than the highly conserved consensus sequence suggests. The basic structure appears to be a series of six alpha-helices separated by beta-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. It has also become apparent that the DNA binding activity of ARID-containing proteins is not necessarily sequence specific. What is consistent is the evidence that family members play vital roles in the regulation of development and/or tissue-specific gene expression. Inappropriate expression of ARID proteins is also increasingly implicated in human tumorigenesis. This review summarizes current knowledge about the structure and function of ARID family members, with a particular focus on the human proteins.  相似文献   

8.
Human upstream binding factor (hUBF) HMG Box‐5 is a highly conserved protein domain, containing 84 amino acids and belonging to the family of the nonspecific DNA‐binding HMG boxes. Its native structure adopts a twisted L shape, which consists of three α‐helices and two hydrophobic cores: the major wing and the minor wing. In this article, we report a reversible three‐state thermal unfolding equilibrium of hUBF HMG Box‐5, which is investigated by differential scanning calorimetry (DSC), circular dichroism spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. DSC data show that Box‐5 unfolds reversibly in two separate stages. Spectroscopic analyses suggest that different structural elements exhibit noncooperative transitions during the unfolding process and that the major form of the Box‐5 thermal intermediate ensemble at 55°C shows partially unfolded characteristics. Compared with previous thermal stability studies of other boxes, it appears that Box‐5 possesses a more stable major wing and two well separated subdomains. NMR chemical shift index and sequential 1HNi1HNi+1 NOE analyses indicate that helices 1 and 2 are native‐like in the thermal intermediate ensemble, while helix 3 is partially unfolded. Detailed NMR relaxation dynamics are compared between the native state and the intermediate ensemble. Our results implicate a fluid helix‐turn‐helix folding model of Box‐5, where helices 1 and 2 potentially form the helix 1‐turn‐helix 2 motif in the intermediate, while helix 3 is consolidated only as two hydrophobic cores form to stabilize the native structure. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.  相似文献   

10.
Dimerization of G protein-coupled receptors has received much attention as a regulatory system of physiological function. Metabotropic glutamate receptors (mGluRs) are suitable models for studying the physiological significance of G protein-coupled receptor dimers because they form constitutive homodimers and function through dimeric rearrangement of their extracellular ligand binding domains. However, the molecular architecture of the transmembrane domains (TMDs) and their rearrangement upon agonist binding are still largely unknown. Here we show that the two helix Vs are arranged as the closest part in the dimeric TMDs and change their positions through synergistic control by the binding of two glutamates. The possibility that helix V is involved in an inter-protomer communication was first suggested by the finding that constitutively active mutation sites were identified on both sides of helix V. Then, comprehensive fluorescence resonance energy transfer (FRET) analysis using mGluRs whose cytoplasmic loops were labeled with donor and acceptor fluorescent proteins revealed that the third intracellular loop connecting helices V and VI of one protomer was in close proximity to the second and third intracellular loops of the other protomer and that all the intracellular loops became closer during the activation. Furthermore, FRET analysis of heterodimers in which only one protomer had ligand binding ability revealed the synergistic effect of the binding of two glutamates on the dimeric rearrangements of the TMD. Thus, the glutamate-dependent synergistic relocation of the helix Vs in the dimer is important for the signal flow from the extracellular ligand binding domain to the cytoplasmic surface of the mGluR.  相似文献   

11.
Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.  相似文献   

12.
13.
JARID1B, a member of the JmjC demethylase family, has a crucial role in H3K4me3 demethylation. The ARID domain is a potential DNA-binding domain of JARID1B. Previous studies indicate that a GC-rich DNA motif is the specific target of the ARID domain. However, the details of the interaction between the ARID domain and duplex DNA require further study. Here, we utilized NMR spectroscopy to assign the backbone amino acids and mapped the DNA-binding sites of the human JARID1B ARID domain. Perturbations to 1H-15N correlation spectra revealed that the flexible loop L1 of ARID was the main DNA-binding interface. EMSA and intrinsic fluorescence experiments demonstrated that mutations on loop L1 strongly reduced the DNA-binding activity of JARID1B ARID. Furthermore, transfection of mutant forms resulted in a distinct loss of intrinsic H3K4 demethylase activity, implying that the flexible loop L1 made a major contribution to sustaining the DNA-binding ability of JARID1B ARID domain.  相似文献   

14.
15.
SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that are highly conserved from yeast to human. From yeast to human the complexes contain a subunit with an ARID (A-T-rich interaction domain) DNA-binding domain. In yeast this subunit is SWI1 and in human there are two closely related alternative subunits, p270 and ARID1B. We describe here a comparison of the DNA-binding properties of the yeast and human SWI/SNF ARID-containing subunits. We have determined that SWI1 is an unusual member of the ARID family in both its ARID sequence and in the fact that its DNA-binding affinity is weaker than that of other ARID family members, including its human counterparts, p270 and ARID1B. Sequence analysis and substitution mutagenesis reveals that the weak DNA-binding affinity of the SWI1 ARID is an intrinsic feature of its sequence, arising from specific variations in the major groove interaction site. In addition, this work confirms the finding that p270 binds DNA without regard to sequence specificity, excluding the possibility that the intrinsic role of the ARID is to recruit SWI/SNF complexes to specific promoter sequences. These results emphasize that care must be taken when comparing yeast and higher eukaryotic SWI/SNF complexes in terms of DNA-binding mechanisms.  相似文献   

16.
The helical hairpin is one of the most ubiquitous and elementary secondary structural motifs in nucleic acids, capable of serving functional roles and participating in long-range tertiary contacts. Yet the self-assembly of these structures has not been well-characterized at the atomic level. With this in mind, the dynamics of nucleic acid hairpin formation and disruption have been studied using a novel computational tool: large-scale, parallel, atomistic molecular dynamics simulation employing an inhomogeneous distributed computer consisting of more than 40,000 processors. Using multiple methodologies, over 500 micro s of atomistic simulation time has been collected for a large ensemble of hairpins (sequence 5'-GGGC[GCAA]GCCU-3'), allowing characterization of rare events not previously observable in simulation. From uncoupled ensemble dynamics simulations in unperturbed folding conditions, we report on 1), competing pathways between the folded and unfolded regions of the conformational space; 2), observed nonnative stacking and basepairing traps; and 3), a helix unwinding-rewinding mode that is differentiated from the unfolding and folding dynamics. A heterogeneous transition state ensemble is characterized structurally through calculations of conformer-specific folding probabilities and a multiplexed replica exchange stochastic dynamics algorithm is used to derive an approximate folding landscape. A comparison between the observed folding mechanism and that of a peptide beta-hairpin analog suggests that although native topology defines the character of the folding landscape, the statistical weighting of potential folding pathways is determined by the chemical nature of the polymer.  相似文献   

17.
18.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   

19.
20.
Two-component signal transduction systems are modular phosphorelay regulatory pathways common in prokaryotes. In the co-crystal structure of the Escherichia coli NarL signal output domain bound to DNA, we observe how the NarL family of two-component response regulators can bind DNA. DNA recognition is accompanied by the formation of a new dimerization interface, which could occur only in the full-length protein via a large intramolecular domain rearrangement. The DNA is recognized by the concerted effects of solvation, van der Waals forces and inherent DNA deformability, rather than determined primarily by major groove hydrogen bonding. These subtle forces permit a small DNA-binding domain to perturb the DNA helix, leading to major DNA curvature and a transition from B- to A-form DNA at the binding site, where valine on the recognition helix interacts unexpectedly with the polar major groove floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号