首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Mitochondrial DNA (mtDNA) mutations could lead to mitochondrial dysfunction, which plays a major role in aging, neurodegeneration, and cancer. Recently, we have highlighted G-quadruplex (G4) formation of putative G4-forming (PQF) mtDNA sequences in cells. Herein, we examine structural variation of G4 formation due to mutation of mtDNA sequences in vitro.

Methods

The combined circular dichroism (CD), nuclear magnetic resonance (NMR), and polyacrylamide gel electrophoresis (PAGE) results provide complementary insights into the structural variation of the studied G-rich sequence and its mutants.

Results

This study illustrates the structural diversity of mt10251, a G-rich mtDNA sequence with a 16-nt loop, (GGGTGGGAGTAGTTCCCTGCTAAGGGAGGG), including the coexistence of a hairpin structure and monomeric, dimeric, and tetrameric G4 structures of mt10251 in 20?mM K+ solution. Moreover, a single-base mutation of mt10251 can cause significant changes in terms of structural populations and polymorphism. In addition, single-base mutations of near-but-not-PQF sequences can potentially change not-G4 to G4 structures. We further found 124 modified PQF sequences due to single-base mutations of near-but-not-PQF sequences in mtDNA.

Conclusions

Single-base mutations of mt10251 could make significant changes in its structural variation and some single-base mutated sequences in mtDNA could form G4 structures in vitro.

General significance

We illustrate the importance of single-base mutations of DNA sequences to the change of G4 formation in vitro. The use of single-base mutations by generating the fourth G-tract and followed by selection in shortening the longest loop size in the near-but-not-PQF sequences was conducted for the G4 formation.  相似文献   

2.
In 1966, a male (17 years old) was clinically examined at the National Institutes of Health (NIH) and diagnosed with Idiopathic Progressive External Ophthalmoplegia (IPEO). A muscle biopsy showing ragged-red fibers implicated mitochondrial involvement. Since the sequence of human mitochondrial DNA (mtDNA) was not determined until 1981, no genetic confirmation of the disease was possible at that time. In 1999, clinical reexamination and sequencing the entire mtDNA of the patient and living maternal relatives (mother and brother) indicated a progressive mitochondrial myopathy and the presence of the 4977 base pair (bp) deletion (the common deletion) in the patient.  相似文献   

3.
4.
In the course of evolution, mitochondria lost their independence, and mtDNA became “slave” of nDNA, depending on numerous nucleus-encoded factors for its integrity, replication and expression. Mutations in any of these factors may alter the cross-talk between the two genomes and cause diseases that affect mtDNA integrity or expression, being inherited as mendelian traits.  相似文献   

5.
6.
Pearson syndrome (PS) is a multisystem disease including refractory anemia, vacuolization of marrow precursors and pancreatic fibrosis. The disease starts during infancy and affects various tissues and organs, and most affected children die before the age of 3 years. Pearson syndrome is caused by de novo large-scale deletions or, more rarely, duplications in the mitochondrial genome. In the present report, we described a Pearson syndrome patient harboring multiple mitochondrial deletions which is, in our knowledge, the first case described and studied in Tunisia. In fact, we reported the common 4.977 kb deletion and two novel heteroplasmic deletions (5.030 and 5.234 kb) of the mtDNA. These deletions affect several protein-coding and tRNAs genes and could strongly lead to defects in mitochondrial polypeptides synthesis, and impair oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patient.  相似文献   

7.
In a previous study, we used mouse zygotes as recipients of mtDNA with a large-scale deletion mutation (DeltamtDNA) and generated respiration-deficient mice (mito-mice) carrying DeltamtDNA. In this study, we used mouse ES cells as recipients of DeltamtDNA, and generated mito-mice with DeltamtDNA only when the ES cells carried 17% DeltamtDNA. No chimera mice or their F(1) progenies were obtained from ES cells carrying more than 61% DeltamtDNA. These observations suggest that respiratory defects of ES cells inhibit their normal differentiation into chimera mice and mito-mice, and that ES cells are more effective than zygotes for generation of mito-mice carrying mtDNAs without significant pathogenic mutations.  相似文献   

8.
Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends.  相似文献   

9.
Induction of parallel human telomeric G-quadruplex structures by Sr(2+)   总被引:1,自引:0,他引:1  
Human telomeric DNA forms G-quadruplex secondary structures, which can inhibit telomerase activity and are targets for anti-cancer drugs. Here we show that Sr(2+) can induce human telomeric DNA to form both inter- and intramolecular structures having characteristics consistent with G-quadruplexes. Unlike Na(+) or K(+), Sr(2+) facilitated intermolecular structure formation for oligonucleotides with 2 to 5 5'-d(TTAGGG)-3' repeats. Longer 5'-d(TTAGGG)-3' oligonucleotides formed exclusively intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in the 1st, 3rd, or 4th repeats of 5'-d(TTAGGG)(4)-3' stabilized the formation of intermolecular structures. However, a more compact, intramolecular structure was still observed when the 2nd repeat was altered. Circular dichroism spectroscopy results suggest that the structures were parallel-stranded, distinguishing them from similar DNA sequences in Na(+) and K(+). This study shows that Sr(2+), promotes parallel-stranded, inter- and intramolecular G-quadruplexes that can serve as models to study DNA substrate recognition by telomerase.  相似文献   

10.
More than 150 pathogenic mitochondrial DNA (mtDNA) mutations associated with a range of illnesses have been described in humans. These mutations are carried by one in 400 people and their inheritance is exclusively maternal. Currently there is no method to prevent mtDNA diseases, which highlights the need for strategies to predict their transmission. Here we outline the scientific background and unique difficulties in understanding the transmission of mtDNA diseases, explaining why their management has lagged so far behind the genetics revolution. Moreover, both current and future management options, including cytoplasmic and nuclear transfer, are also discussed.  相似文献   

11.
Physarum polycephalum. The conformation of Physarum mtDNA is currently thought to be circular. The inheritance of its mtDNA depends on the multiallelic mating type loci, matA. In a cross with ordinary matA combinations, the strain that has the higher matA status transmits its mtDNA to the progeny (uniparental inheritance). The mF plasmid promotes the fusion of mitochondria in the zygote and during sporulation. When it exists in a strain with a lower status matA, the mF plasmid overcomes the force of uniparental inheritance and is preferentially transmitted to the progeny via mitochondrial fusion. Moreover, the conformation of mtDNA is changed from circular to linear by recombination with the mF plasmid. Since biparental inheritance usually occurs in a cross involving a combination of matA1 and matA15, two types of inheritance of Physarum mtDNA exist. Considering the existence of the mF plasmid, there are four patterns of cytoplasmic inheritance in P. polycephalum: 1) uniparental inheritance of mtDNA, 2) uniparental inheritance of mtDNA and preferential transmission of the mF plasmid, 3) biparental inheritance of mtDNA, and 4) biparental inheritance of mtDNA and the mF plasmid. This article describes the events involved in each pattern. Finally, we discuss a hypothetical mechanism for mitochondrial fusion. The essential protein may be the ORF640 protein encoded in the mF plasmid. Received 8 March 2000/ Accepted in revised form 23 March 2000  相似文献   

12.
Herrnstadt C  Howell N 《Mitochondrion》2004,4(5-6):791-798
More than 75 human diseases have been associated with mitochondrial dysfunction, and many of these are directly caused by overtly pathogenic mutations in the mitochondrial genome (mtDNA). In addition, there have been a number of reports that posit a different, subtler role for mtDNA substitutions in the disease process. As we review here, mtDNA evolution has resulted in the distribution of sequences into continent-specific haplogroups, which are defined by a relatively small number of polymorphisms. Thus, mtDNA sequences can be assigned to European, African, or Asian/Native American haplogroups. There are numerous reports that various diseases are haplogroup-associated, and it has been suggested that some of these haplogroup-associated polymorphisms act as risk factors in these disorders. It has also been suggested that there are haplogroup-associations for aging. As we note here, however, such associations have usually been observed only in single studies and it is difficult to draw broad conclusions on the basis of the available evidence. At a minimum, we suggest that, a haplogroup-group association must be detected in multiple subpopulations or in a large, carefully controlled population survey.  相似文献   

13.
Despite the strong purifying selection that occurs during embryonic development, the particular location and features of mitochondrial DNA make it especially susceptible to accumulating point mutations, giving rise to a large number of mitochondrial DNA variants. Many of these will have moderate or no phenotypic effects but others will be the cause of very dramatic diseases, usually known as mitochondriopathies. Because of the abundance of different mitochondrial DNA variants, it is not easy to determine whether a new mutation is pathogenic. To facilitate this task, different criteria have been proposed, but they are often either too severely or too loosely applied. Citing examples from the literature, in this paper we discuss some critical aspects of these criteria.  相似文献   

14.
Studies in vitro have shown that a respiratorydeficient phenotype is expressed by cells when the proportion of mtDNA with a disease-associated mutation exceeds a threshold level, but analysis of tissues from patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) have failed to show a consistent relationship between the degree of heteroplasmy and biochemical expression of the defect. One possible explanation for this phenomenon is that there is variation of heteroplasmy between individual cells that is not adequately reflected by the mean heteroplasmy for a tissue. We have confirmed this by study of fibroblast clones from subjects heteroplasmic for the MELAS 3243 (A G) mtDNA mutation. Similar observations were made with fibroblast clones derived from two subjects heteroplasmic for the 11778 (GA) mtDNA mutation of Leber's hereditary optic neuropathy. For the MELAS 3243 mutation, the distribution of mutant mtDNA between different cells was not randomly distributed about the mean, suggesting that selection against cells with high proportions of mutant mtDNA had occurred. To explore the way in which heteroplasmic mtDNA segregates in mitosis we followed the distribution of heteroplasmy between clones over approximately 15 generations. There was either no change or a decrease in the variance of intercellular heteroplasmy for the MELAS 3243 mutation, which is most consistent with segregation of heteroplasmic units of multiple mtDNA molecules in mitosis. After mitochondria from one of the MELAS 3243 fibroblast cultures were transferred to a mitochondrial DNA-free (0) cell line derived from osteosarcoma cells by cytoplast fusion, the mean level and intercellular distribution of heteroplasmy was unchanged. We interpret this as evidence that somatic segregation (rather than nuclear background or cell differentiation state) is the primary determinant of the level of heteroplasmy.  相似文献   

15.
BACKGROUND: The quantitative loss of mitochondrial DNA (mtDNA) known as mtDNA depletion, often gives rise to liver disease. The diagnosis of mtDNA depletion syndrome is frequently imprecise, both for technical reasons and because of the lack of established age-adjusted normal ranges. We aimed to refine quantitative methods for diagnosing the hepatic type of mtDNA depletion syndrome, firstly by establishing an age-matched reference range for mitochondrial to nuclear DNA ratio (henceforth "mtDNA content") and secondly by investigating mtDNA in fibroblasts. METHODS: By comparing realtime PCR with an established method for quantifying mtDNA content we established a reference range for young children using biopsy and post-mortem material from patients <15 years. In addition, we investigated the arrangement of mtDNA in nucleoids from fibroblasts using fluorescence microscopy. RESULTS: Both methods showed that the mtDNA content of liver increases rapidly over the perinatal period. In a patient whose liver mtDNA content fell, but remained within the reference range, early investigation and age-matched controls were essential, as we found a progressive increase in muscle mtDNA copy number, respiratory chain activity and muscle power with age. In three further patients, fluorescence microscopy of the fibroblasts proved diagnostic. In one case a movement disorder was an important pointer. CONCLUSIONS: These cases highlight the (i) need for comparing mtDNA copy number data generated from patients to DNA isolated from an age-matched normal range from the tissue of interest and (ii) the utility of mtDNA staining with PicoGreen as a method to detect aberrant nucleoid morphology in mtDNA depletion patient fibroblast lines when affected tissues are not available for measuring mtDNA copy number.  相似文献   

16.
Recent evidence suggests that somatic mutations in nuclear and mitochondrial DNA accumulated during aging, may significantly contribute to the pathogenesis of chronic-degenerative illness such as coronary artery disease (CAD). Mitochondrial DNA with 4977 bp deletion mutation (mtDNA4977) is a common type of mtDNA alteration in humans. However, little attempt has been made to detect the presence of mtDNA4977 deletion in cells and tissues of cardiovascular patients. This study investigated the presence of mtDNA4977 in blood samples of 65 cardiovascular patients and 23 atherosclerotic plaques of human coronaries with severe atherosclerosis. Moreover, the presence of the deletion has been investigated in blood cells from 22 healthy age-matched subjects. The detection of mtDNA4977 has been performed by using a nested polymerase chain reaction (PCR) protocol and normalized to wild-type mtDNA. A significant higher incidence of mtDNA4977 was observed in CAD patients with respect to healthy subjects (26.2% versus 4.5%; P=0.03). Furthermore, the relative amount of the deletion was significantly higher in the patients compared to the control group (P=0.02). The mtDNA4977 was detected in 17 of the 65 patients blood samples (26.2%) and deletion levels ranged from 0.18 to 0.46% of the total mtDNA (mean: 0.34+/-0.02%). For what concerns atherosclerotic lesions, 5 patients (21.7%) showed the deletion ranging from 0.13 to 0.45% of the total mtDNA (mean: 0.35+/-0.06%). In both samples from patients, the incidence and the relative amount of mtDNA4977 was not significantly influenced by atherogenic risk factors and clinical parameters. The obtained results may suggest that the increase of oxidative stress in cardiovascular disease may be responsible for the accumulation of mtDNA damage in coronary artery disease patients.  相似文献   

17.
Sjoerd Wanrooij  Maria Falkenberg 《BBA》2010,1797(8):1378-176
Mitochondria are organelles whose main function is to generate power by oxidative phosphorylation. Some of the essential genes required for this energy production are encoded by the mitochondrial genome, a small circular double stranded DNA molecule. Human mtDNA is replicated by a specialized machinery distinct from the nuclear replisome. Defects in the mitochondrial replication machinery can lead to loss of genetic information by deletion and/or depletion of the mtDNA, which subsequently may cause disturbed oxidative phosphorylation and neuromuscular symptoms in patients. We discuss here the different components of the mitochondrial replication machinery and their role in disease. We also review the mode of mammalian mtDNA replication.  相似文献   

18.
19.
To clarify the importance of deleted protein and tRNA genes on the impairment of mitochondrial function, we performed a quantitative analysis of biochemical, genetic and morphological findings in skeletal muscles of 16 patients with single deletions and 5 patients with multiple deletions of mtDNA. Clinically, all patients showed chronic progressive external ophthalmoplegia (CPEO). The size of deletions varied between 2.5 and 9 kb, and heteroplasmy between 31% and 94%. In patients with single deletions, the citrate synthase (CS) activity was nearly doubled. Decreased ratios of pyruvate- and succinate-dependent respiration were detected in fibers of all patients in comparison to controls. Inverse and linear correlations without thresholds were established between heteroplasmy and (i) CS referenced activities of the complexes of respiratory chain, (ii) CS referenced maximal respiratory rates, (iii) and cytochrome-c-oxidase (COX) negative fibers. In patients with single and multiple deletions, all respiratory chain complexes as well as the respiratory rates were decreased to a similar extent. All changes detected in patients with single deletions were independent of deletion size. In one patient, only genes of ND5, ND4L as well as tRNALeu(CUN), tRNASer(AGY), and tRNAHis were deleted. The pronounced decrease in COX activity in this patient points to the high pathological impact of these missing tRNA genes. The activity of nuclear encoded SDH was also significantly decreased in patients, but to a lesser extent. This is an indication of secondary disturbances of mitochondria at CPEO.In conclusion, we have shown that different deletions cause mitochondrial impairments of the same phenotype correlating with heteroplasmy. The missing threshold at the level of mitochondrial function seems to be characteristic for large-scale deletions were tRNA and protein genes are deleted.  相似文献   

20.
Mutations in mitochondrial DNA (mtDNA) are associated with diverse pathological states in humans, notably sensorineural deafness. In humans, mtDNA4977 deletion, known as common deletion, is thought to play a critical role in presbyacusis. A similar mtDNA deletion occurs in the naturally aging rats is mtDNA4834 deletion. Today, it is still obscure about the effect of common mtDNA deletion on the presbyacusis and hearing loss. We establish a model of rat associated with mtDNA4834 deletion in inner ear by d-galactose. It was found that the malondialdehyde (MDA) increased with superoxide dismutase (SOD) decreasing in the inner ear of the rat treated with d-galactose than of the control. However, there was no significant difference in elevation of ABR threshold between the rat with mtDNA4834 deletion induced by d-galactose and control. After aminoglycoside antibiotic injected, the hearing threshold of the rats carrying mtDNA4834 deletion increased significantly compared with the rats without mtDNA4834 deletion. The results show that resembled accelerated aging in the inner ear of the rat could be induced by injecting d-galactose. Moreover, those suggest that mtDNA4834 deletion can not directly induce the hearing loss, but acting as a predisposing factor which can greatly enhance the sensitivity of the inner ear to the aminoglycoside antibiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号