共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Young Bin Hong Jaesoon Joo Young Se Hyun Geon Kwak Yu-Ri Choi Ha Kyung Yeo Dong Hwan Jwa Eun Ja Kim Won Min Mo Soo Hyun Nam Sung Min Kim Jeong Hyun Yoo Heasoo Koo Hwan Tae Park Ki Wha Chung Byung-Ok Choi 《PLoS genetics》2016,12(2)
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of peripheral neuropathies with diverse genetic causes. In this study, we identified p.I43N mutation in PMP2 from a family exhibiting autosomal dominant demyelinating CMT neuropathy by whole exome sequencing and characterized the clinical features. The age at onset was the first to second decades and muscle atrophy started in the distal portion of the leg. Predominant fatty replacement in the anterior and lateral compartment was similar to that in CMT1A caused by PMP22 duplication. Sural nerve biopsy showed onion bulbs and degenerating fibers with various myelin abnormalities. The relevance of PMP2 mutation as a genetic cause of dominant CMT1 was assessed using transgenic mouse models. Transgenic mice expressing wild type or mutant (p.I43N) PMP2 exhibited abnormal motor function. Electrophysiological data revealed that both mice had reduced motor nerve conduction velocities (MNCV). Electron microscopy revealed that demyelinating fibers and internodal lengths were shortened in both transgenic mice. These data imply that overexpression of wild type as well as mutant PMP2 also causes the CMT1 phenotype, which has been documented in the PMP22. This report might expand the genetic and clinical features of CMT and a further mechanism study will enhance our understanding of PMP2-associated peripheral neuropathy. 相似文献
4.
Duane L. Guernsey Haiyan Jiang Karen Bedard Susan C. Evans Meghan Ferguson Makoto Matsuoka Christine Macgillivray Mathew Nightingale Scott Perry Andrea L. Rideout Andrew Orr Mark Ludman David L. Skidmore Timothy Benstead Mark E. Samuels 《PLoS genetics》2010,6(8)
Charcot-Marie-Tooth disease (CMT) represents a family of related sensorimotor neuropathies. We studied a large family from a rural eastern Canadian community, with multiple individuals suffering from a condition clinically most similar to autosomal recessive axonal CMT, or AR-CMT2. Homozygosity mapping with high-density SNP genotyping of six affected individuals from the family excluded 23 known genes for various subtypes of CMT and instead identified a single homozygous region on chromosome 9, at 122,423,730–129,841,977 Mbp, shared identical by state in all six affected individuals. A homozygous pathogenic variant was identified in the gene encoding leucine rich repeat and sterile alpha motif 1 (LRSAM1) by direct DNA sequencing of genes within the region in affected DNA samples. The single nucleotide change mutates an intronic consensus acceptor splicing site from AG to AA. Direct analysis of RNA from patient blood demonstrated aberrant splicing of the affected exon, causing an obligatory frameshift and premature truncation of the protein. Western blotting of immortalized cells from a homozygous patient showed complete absence of detectable protein, consistent with the splice site defect. LRSAM1 plays a role in membrane vesicle fusion during viral maturation and for proper adhesion of neuronal cells in culture. Other ubiquitin ligases play documented roles in neurodegenerative diseases. LRSAM1 is a strong candidate for the causal gene for the genetic disorder in our kindred. 相似文献
5.
Anna L. Chapman Ellen J. Bennett Tennore M. Ramesh Kurt J. De Vos Andrew J. Grierson 《PloS one》2013,8(6)
Charcot-Marie-Tooth disease (CMT) represents a group of neurodegenerative disorders typically characterised by demyelination (CMT1) or distal axon degeneration (CMT2) of motor and sensory neurons. The majority of CMT2 cases are caused by mutations in mitofusin 2 (MFN2); an essential gene encoding a protein responsible for fusion of the mitochondrial outer membrane. The mechanism of action of MFN2 mutations is still not fully resolved. To investigate a role for loss of Mfn2 function in disease we investigated an ENU-induced nonsense mutation in zebrafish MFN2 and characterised the phenotype of these fish at the whole organism, pathological, and subcellular level. We show that unlike mice, loss of MFN2 function in zebrafish leads to an adult onset, progressive phenotype with predominant symptoms of motor dysfunction similar to CMT2. Mutant zebrafish show progressive loss of swimming associated with alterations at the neuro-muscular junction. At the cellular level, we provide direct evidence that mitochondrial transport along axons is perturbed in Mfn2 mutant zebrafish, suggesting that this is a key mechanism of disease in CMT. The progressive phenotype and pathology suggest that zebrafish will be useful for further investigating the disease mechanism and potential treatment of axonal forms of CMT. Our findings support the idea that MFN2 mutation status should be investigated in patients presenting with early-onset recessively inherited axonal CMT. 相似文献
6.
Jinglan Zhang Véronik Lachance Adam Schaffner Xianting Li Anastasia Fedick Lauren E. Kaye Jun Liao Jill Rosenfeld Naomi Yachelevich Mary-Lynn Chu Wendy G. Mitchell Richard G. Boles Ellen Moran Mari Tokita Elizabeth Gorman Kaytee Bagley Wei Zhang Fan Xia Magalie Leduc Yaping Yang Christine Eng Lee-Jun Wong Raphael Schiffmann George A. Diaz Ruth Kornreich Ryan Thummel Melissa Wasserstein Zhenyu Yue Lisa Edelmann 《PLoS genetics》2016,12(4)
Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. 相似文献
7.
Saskia F. Heeringa Clemens C. M?ller Jianyang Du Lixia Yue Bernward Hinkes Gil Chernin Christopher N. Vlangos Peter F. Hoyer Jochen Reiser Friedhelm Hildebrandt 《PloS one》2009,4(11)
Background
TRPC6, encoding a member of the transient receptor potential (TRP) superfamily of ion channels, is a calcium-permeable cation channel, which mediates capacitive calcium entry into the cell. Until today, seven different mutations in TRPC6 have been identified as a cause of autosomal-dominant focal segmental glomerulosclerosis (FSGS) in adults.Methodology/Principal Findings
Here we report a novel TRPC6 mutation that leads to early onset FSGS. We identified one family in whom disease segregated with a novel TRPC6 mutation (M132T), that also affected pediatric individuals as early as nine years of age. Twenty-one pedigrees compatible with an autosomal-dominant mode of inheritance and biopsy-proven FSGS were selected from a worldwide cohort of 550 families with steroid resistant nephrotic syndrome (SRNS). Whole cell current recordings of the mutant TRPC6 channel, compared to the wild-type channel, showed a 3 to 5-fold increase in the average out- and inward TRPC6 current amplitude. The mean inward calcium current of M132T was 10-fold larger than that of wild-type TRPC6. Interestingly, M132T mutants also lacked time-dependent inactivation. Generation of a novel double mutant M132T/N143S did not further augment TRPC6 channel activity.Conclusions
In summary, our data shows that TRPC6 mediated FSGS can also be found in children. The large increase in channel currents and impaired channel inactivation caused by the M132T mutant leads to an aggressive phenotype that underlines the importance of calcium dose channeled through TRPC6. 相似文献8.
9.
Ying Hu I-Ping Chen Salome de Almeida Valdenize Tiziani Cassio M. Raposo Do Amaral Kalpana Gowrishankar Maria Rita Passos-Bueno Ernst J. Reichenberger 《PloS one》2013,8(8)
Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated. 相似文献
10.
Frank Rutsch Mary MacDougall Changming Lu Insa Buers Olga Mamaeva Yvonne Nitschke Gillian?I. Rice Heidi Erlandsen Hans?Gerd Kehl Holger Thiele Peter Nürnberg Wolfgang H?hne Yanick?J. Crow Annette Feigenbaum Raoul?C. Hennekam 《American journal of human genetics》2015,96(2):275-282
Singleton-Merten syndrome (SMS) is an infrequently described autosomal-dominant disorder characterized by early and extreme aortic and valvular calcification, dental anomalies (early-onset periodontitis and root resorption), osteopenia, and acro-osteolysis. To determine the molecular etiology of this disease, we performed whole-exome sequencing and targeted Sanger sequencing. We identified a common missense mutation, c.2465G>A (p.Arg822Gln), in interferon induced with helicase C domain 1 (IFIH1, encoding melanoma differentiation-associated protein 5 [MDA5]) in four SMS subjects from two families and a simplex case. IFIH1 has been linked to a number of autoimmune disorders, including Aicardi-Goutières syndrome. Immunohistochemistry demonstrated the localization of MDA5 in all affected target tissues. In vitro functional analysis revealed that the IFIH1 c.2465G>A mutation enhanced MDA5 function in interferon beta induction. Interferon signature genes were upregulated in SMS individuals’ blood and dental cells. Our data identify a gain-of-function IFIH1 mutation as causing SMS and leading to early arterial calcification and dental inflammation and resorption. 相似文献
11.
12.
S Kohl F Coppieters F Meire S Schaich S Roosing C Brennenstuhl S Bolz MM van Genderen FC Riemslag;the European Retinal Disease Consortium R Lukowski AI den Hollander FP Cremers E De Baere CB Hoyng B Wissinger 《American journal of human genetics》2012,91(3):527-532
Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12∗) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction. 相似文献
13.
Philippe Latour Christel Thauvin-Robinet Pierre Soichot Laurence Faivre Martine Mayençon Emmanuel Broussolle William Camu Robert Rousson 《American journal of human genetics》2010,86(1):77-82
Charcot-Marie-Tooth disease (CMT) is the most common cause of inherited peripheral neuropathy, with an estimated frequency of 1/2500. We studied a large family with 17 patients affected by the axonal form of CMT (CMT2). Analysis of the 15 genes or loci known to date was negative. Genome-wide genotyping identified a CMT2 locus in 16q21-q23 between D16S3050 and D16S3106. The maximum two-point LOD score was 4.77 at θ = 0 for marker D16S3050. Sequencing of candidate genes identified a unique mutation, c.986G>A (p.Arg329His), affecting a totally conserved amino acid in the helical domain of cytoplasmic alanyl-tRNA synthetase (AlaRS). A second family with the same mutation and a different founder was then identified in a cohort of 91 CMT2 families. Although mislocation of mutant Arg329His-AlaRS in axons remains to be evaluated, experimental data point mostly to a quantitative reduction in tRNAAla aminoacylation. Aminoacylation and editing functions closely cooperate in AlaRS, and Arg329His mutation could also lead to qualitative errors participating in neurodegeneration. Our report documents in 18 patients the deleterious impact of a mutation in human cytoplasmic AlaRS and broadens the spectrum of defects found in tRNA synthetases. Patients present with sensory-motor distal degeneration secondary to predominant axonal neuropathy, slight demyelination, and no atypical or additional CNS features. 相似文献
14.
Meiyan Chen Jing Wu Ning Liang Lihui Tang Yanhua Chen Huishuang Chen Wei Wei Tianying Wei Hui Huang Xin Yi Ming Qi 《基因组蛋白质组与生物信息学报(英文版)》2014,12(5):221-227
Abstract Charcot-Marie-Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient's condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs*42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases. 相似文献
15.
Wenjing Li Hong Zhu Xuelian Zhao Deborah Brancho Yuanxin Liang Yiyu Zou Craig Bennett Chi-Wing Chow 《Molecular and cellular biology》2015,35(14):2464-2478
Endosomal trafficking is a key mechanism to modulate signal propagation and cross talk. Ubiquitin adaptors, along with endosomal sorting complex required for transport (ESCRT) complexes, are also integrated to terminate ligand-receptor activation in late endosomes and multivesicular bodies (MVBs). Within these pathways, we recently demonstrated that the protein SIMPLE is a novel player in MVB regulation. SIMPLE is also clinically important and its mutation accounts for the Charcot-Marie-Tooth type 1C (CMT1C) disease. MVB defects of mutation and deletion of SIMPLE, however, are distinct. Here, we show that MVB defects found in mutation but not deletion of SIMPLE lead to impaired turnover and accumulation of ESCRT-0 protein Hrs puncta in late endosomes. We further uncover increased colocalization of ubiquitin ligase TRAF6 and Hrs in late endosomes. Upon stimulation with interkeukin-1 or transforming growth factor β, prolonged activation of p38 kinase/JNK is detected, while nuclear accumulation of NF-κB and phosphorylation of SMAD2 is reduced with CMT1C mutation. The aberrant kinetics we observed in inflammatory signaling may contribute to increased tumor susceptibility and changes in the levels of chemokines/cytokines that result from CMT1C mutation. We propose that altered endosomal trafficking due to malformations of MVBs and subsequent atypical signaling kinetic may account for a toxic gain of function in CMT1C pathogenesis. 相似文献
16.
Na-Young Park Geon Kwak Hyun-Myung Doo Hye-Jin Kim So-Young Jang Yun-Il Lee Byung-Ok Choi Young-Bin Hong 《Current issues in molecular biology》2021,43(3):2011
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT. 相似文献
17.
R Shaheen E Faqeih HE Shamseldin RR Noche A Sunker MJ Alshammari T Al-Sheddi N Adly MS Al-Dosari SG Megason M Al-Husain F Al-Mohanna FS Alkuraya 《American journal of human genetics》2012,91(2):330-336
Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein. 相似文献
18.
Weber S Thiele H Mir S Toliat MR Sozeri B Reutter H Draaken M Ludwig M Altmüller J Frommolt P Stuart HM Ranjzad P Hanley NA Jennings R Newman WG Wilcox DT Thiel U Schlingmann KP Beetz R Hoyer PF Konrad M Schaefer F Nürnberg P Woolf AS 《American journal of human genetics》2011,(5):668-674
Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. 相似文献
19.
Homozygous Defects in LMNA, Encoding Lamin A/C Nuclear-Envelope Proteins, Cause Autosomal Recessive Axonal Neuropathy in Human (Charcot-Marie-Tooth Disorder Type 2) and Mouse 总被引:13,自引:0,他引:13 下载免费PDF全文
Annachiara De?Sandre-Giovannoli Malika Chaouch Serguei Kozlov Jean-Michel Vallat Meriem Tazir Nadia Kassouri Pierre Szepetowski Tarik Hammadouche Antoon Vandenberghe Colin L. Stewart Djamel Grid Nicolas Lévy 《American journal of human genetics》2002,70(3):726-736
The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1. 相似文献