首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.  相似文献   

3.
Most work on embryonic stem cell differentiation uses mammalian cells derived from the blastocyst stage and some of the most widely used protocols to induce differentiation involve growing these cells in monolayer culture. Equivalent stem cells can be obtained from embryos of non-mammalian vertebrates, but to date this has only been successful in birds. These cells can contribute to all somatic lineages in chimaeras and can be induced to differentiate into a variety of cell types in vitro via embryoid body formation. However to date there are no reliable methods for differentiating them into descendants from each of the germ layers in monolayer culture, comparable to the protocols used in mammals. Here we describe three simple and reproducible protocols for differentiation of chick embryonic stem cells into mesoderm (bone), endoderm and neuroectoderm (neurons and glia) in monolayer culture. These methods open the way for more direct comparisons of the properties of mammalian and avian embryonic stem cells that may highlight similarities and differences.  相似文献   

4.
The KiSS1/GPR54 system in fish   总被引:1,自引:0,他引:1  
Elizur A 《Peptides》2009,30(1):164-170
  相似文献   

5.
6.
7.
Recent studies have shown that soluble calcium activated proteases (calpains) in brain degrade proteins associated with the cytoskeleton and vary markedly in activity across regions and as a function of development. It was suggested that the observed differences in calpain activity reflect differences in the turnover rate of structural elements. The present study extends this analysis by measuring the properties and activity of calpain in representatives of the five classes of vertebrates with particular emphasis on the mammals. No evidence for proteolysis was found in soluble fractions of fish brains at neutral pH in the presence or absence of added calcium. A substantial calcium-independent proteolytic activity was found in amphibian brains—the effects of a variety of protease inhibitors indicated that it is also a neurtral thiol (cysteine) protease. Reptilian brains exhibited both calcium-independent and calcium-dependent proteolytic activity. Virtually all proteolytic activity in birds (5 species) and mammals (9 species) measured at neutral pH was calcium-dependent. The endogenous substrates for the calcium activated proteases were very similar in several species of birds and mammals as were the effects of a variety of protease inhibitors. However, the activity of the enzyme, expressed per mg of soluble protein, was highly and negatively correlated with brain size in the mammals. The allometric expression for this relationship was similar to that found for the density of neurons in cerebral cortex as a function of absolute brain size. These results indicate that soluble proteolytic enzymes in brain are differentially expressed among classes of vertebrates and suggest that the turnover of cytoskeletal elements in birds and mammals differs in important ways from that found in fish and amphibians. The results obtained for mammals raise the possibility of a relationship between brain size and the rate at which structural elements are broken down and replaced in this vertebrate class.  相似文献   

8.
Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.  相似文献   

9.
10.
An outstanding candidate for a primary male-determining gene equivalent to Sry of mammals has been recently described from a non-mammalian vertebrate, the medaka fish (Oryzias latipes). However, the universality of dmY/dmrt1Y as the master sex-determining gene in fish is questionable. Phylogenetic analysis shows that dmY/dmrt1Y is an evolutionarily young Y chromosome-specific duplicate of a gene involved in testis development in vertebrates, and that this duplicate cannot be the primary sex-determining gene in most other fish species. Study of alternative fish models will probably uncover new genetic strategies controlling sexual dimorphism in vertebrates.  相似文献   

11.
Classical phylogenetic, neuroanatomical and neuroembryological studies propose an independent evolutionary origin of the brains of insects and vertebrates. Contrasting with this, data from three sets of molecular and genetic analyses indicate that the developmental program of brains of insects and vertebrates might be highly conserved and suggest a monophyletic origin of the brain of protostomes and deuterostomes. First, recent results of molecular phylogeny imply that none of the currently living animals correspond to evolutionary intermediates between protostomes and deuterostomes, thus making it impossible to infer the morphological organization of an ancestral bilaterian brain from living specimens. Second, recent molecular genetic evidence provides support for the body axis inversion hypothesis, which implies that a dorsoventral inversion of the body axis occurred in protostomes versus deuterostomes, leading to the inverted location of neurogenic regions in these animal groups. Third, recent developmental genetic analyses are uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in early brain development in insect and vertebrate model systems. Thus, development of the anteriormost part of the embryonic brain in both insects and vertebrates depends upon the otd/Otx and ems/Emx genes; development of the posterior part of the embryonic brain in both insects and vertebrates involves homologous control genes of the Hox cluster. These findings, which demonstrate the conserved expression and function of key patterning genes involved in embryonic brain development in insects and vertebrates support the hypothesis that the brains of protostomes and deuterostomes are of monophyletic, urbilaterian origin.  相似文献   

12.
13.
In the adult mammalian brain, the ability to minimize secondary cell death after injury, and to repair nervous tissue through generation of new neurons, is severely compromised. By contrast, certain taxa of non-mammalian vertebrates possess an enormous potential for regeneration. Examination of one of these taxa, teleost fish, has revealed a close link between this phenomenon and constitutive adult neurogenesis. Key factors mediating successful regeneration appear to be: elimination of damaged cells by apoptosis, instead of necrosis; activation of mechanisms that prevent the occurrence of secondary cell death; increased production of new neurons that replace neurons lost to injury; and activation of developmental mechanisms that mediate directed migration of the new cells to the site of injury, the differentiation of the young cells, and their integration into the existing neural network. Comparative analysis has suggested that constitutive adult neurogenesis is a primitive vertebrate trait, the main function of which has been to ensure a numerical matching between muscle fibers/sensory receptor cells and central elements involved in motor control/processing of sensory information associated with these peripheral elements. It is hypothesized that, when in the course of the evolution of mammals a major shift in the growth pattern from hyperplasia to hypertrophy took place, the number of neurogenic brain regions and new neurons markedly decreased. As a consequence, the potential for neuronal regeneration was greatly reduced, but remnants of neurogenic areas have persisted in the adult mammalian brain in form of quiescent stem cells. It is likely that the study of regeneration-competent taxa will provide important information on how to activate intrinsic mechanisms for successful brain regeneration in humans.  相似文献   

14.
15.
All cranial sensory organs and sensory neurons of vertebrates develop from cranial placodes. In chick, amphibians and zebrafish, all placodes originate from a common precursor domain, the pre-placodal region (PPR), marked by the expression of Six1/4 and Eya1/2. However, the PPR has never been described in mammals and the mechanism involved in the formation of PPR is poorly defined. Here, we report the expression of Six1 in the horseshoe-shaped mouse ectoderm surrounding the anterior neural plate in a pattern broadly similar to that of non-mammalian vertebrates. To elucidate the identity of Six1-positive mouse ectoderm, we searched for enhancers responsible for Six1 expression by in vivo enhancer assays. One conserved non-coding sequence, Six1-14, showed specific enhancer activity in the rostral PPR of chick and Xenopus and in the mouse ectoderm. These results strongly suggest the presence of PPR in mouse and that it is conserved in vertebrates. Moreover, we show the importance of the homeodomain protein-binding sites of Six1-14, the Six1 rostral PPR enhancer, for enhancer activity, and that Dlx5, Msx1 and Pax7 are candidate binding factors that regulate the level and area of Six1 expression, and thereby the location of the PPR. Our findings provide critical information and tools to elucidate the molecular mechanism of early sensory development and have implications for the development of sensory precursor/stem cells.  相似文献   

16.
17.
In mammals, ghrelin is a non-amidated peptide hormone, existing in both acylated and non-acylated forms, produced mainly from the X/A or ghrelin cells present in the mucosal layer of the stomach. Ghrelin is a natural ligand of the growth hormone (GH) secretagogue-receptor (GHS-R), and functions primarily as a GH-releasing hormone and an orexigen, as well as having several other biological actions. Among non-mammalian vertebrates, amino acid sequence of ghrelin has been reported in two species of cartilaginous fish, seven species of teleosts, two species of amphibians, one species of reptile and six species of birds. The structure and functions of ghrelin are highly conserved among vertebrates. This review presents a concise overview of ghrelin biology in non-mammalian vertebrates.  相似文献   

18.
In mammals, ghrelin is a non-amidated peptide hormone, existing in both acylated and non-acylated forms, produced mainly from the X/A or ghrelin cells present in the mucosal layer of the stomach. Ghrelin is a natural ligand of the growth hormone (GH) secretagogue-receptor (GHS-R), and functions primarily as a GH-releasing hormone and an orexigen, as well as having several other biological actions. Among non-mammalian vertebrates, amino acid sequence of ghrelin has been reported in two species of cartilaginous fish, seven species of teleosts, two species of amphibians, one species of reptile and six species of birds. The structure and functions of ghrelin are highly conserved among vertebrates. This review presents a concise overview of ghrelin biology in non-mammalian vertebrates.  相似文献   

19.
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air‐breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late‐stage chick embryos (day 18 out of a 21‐day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA‐LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA‐LC while deactivating H/O‐producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA‐LC activity. These data reveal that at least some of the same neural systems involved in brain‐state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1030–1037, 2014  相似文献   

20.
Summary The endocrine system of the gastro-intestinal tract of selected species representing the five higher vertebrate classes was investigated with reference to occurrence and distribution of neurotensin-like immunoreactive cells. Using antibodies against C-terminal and N-terminal fragments of neurotensin and against the C-terminal sequence of xenopsin it was demonstrated that the intestine of all species studied contains endocrine, neurotensin-like immunoreactive cells. However, large differences in localization and frequency of these neurotensin-like immunoreactive cells were found. Except for a teleostean fish, neurotensin-like immunoreactive cells in the gastro-intestinal tract were more frequent in non-mammalian vertebrates than in mammals. In contrast to mammals, where the highest density of neurotensin-like immunoreactive cells was present in the ileal mucosa, in the non-mammalian vertebrates studied the corresponding cells were most abundant in the pyloric-duodenal junction. The exact mapping of neurotensin-like immunoreactive cells is presented throughout the entire gastro-intestinal tract of six species (Rattus, Coturnix, Lacerta, Rana, Xenopus, Carassius) including a quantitative evaluation of sequential serial sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号