首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric cancer is associated with chronic inflammation and Helicobacter pylori infection. Th17 cells are CD4+ T cells associated with infections and inflammation; but their role and mechanism of induction during carcinogenesis is not understood. Gastric myofibroblasts/fibroblasts (GMF) are abundant class II MHC expressing cells that act as novel antigen presenting cells. Here we have demonstrated the accumulation of Th17 in H. pylori-infected human tissues and in the gastric tumor microenvironment. GMF isolated from human gastric cancer and H. pylori infected tissues co-cultured with CD4+ T cells induced substantially higher levels of Th17 than GMF from normal tissues in an IL-6, TGF-β, and IL-21 dependent manner. Th17 required interaction with class II MHC on GMF for activation and proliferation. These studies suggest that Th17 are induced during both H. pylori infection and gastric cancer in the inflammatory milieu of gastric stroma and may be an important link between inflammation and carcinogenesis.  相似文献   

2.
Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy.  相似文献   

3.
Prostate cancer (PCa) is one of the most epidemic types of cancer in men. The tumor microenvironment (TME) of PCa is involved in the emergence of immunosuppressive factors such as myeloid-derived suppressor cells (MDSC), which regulate the immune system by several mechanisms, including interleukin (IL)-10 production. On the other hand, IL-17+ helper T cells (Th17) induce MDSCs and chronic inflammation in TME by producing IL-17. This study demonstrated that the frequency of CD33+ pSTAT3+ MDSC and IL-17+ lymphocyte as well as IL-10 messenger RNA (mRNA) expression were significantly higher in the PCa patients than in the benign prostatic hyperplasia (BPH) group. Moreover, there was no significant relationship between the frequency of CD33+ pSTAT3+ MDSC, and IL-17+ lymphocyte with Gleason scores in the PCa group. We suggested that the higher frequency of CD33+ pSTAT3+ MDSC and IL-17+ lymphocyte and the more frequent expression of IL-10 mRNA in PCa patients may play roles in tumor progression from BPH to PCa.  相似文献   

4.
Secretion of the proinflammatory cytokine Interleukin-17A (IL-17A) is the hallmark of a unique lineage of CD4 T cells designated Th17 cells, which may play a crucial role in the pathogenesis of rheumatoid arthritis (RA) and many autoimmune diseases. Recently, IL-17-producing cells other than T cells have been described, including diverse innate immune cells. Here, we show that the cellular sources of IL-17A in RA include a significant number of non-T cells. Multicolour fluorescence analysis of IL-17-expressing peripheral blood mononuclear cells (PBMC) revealed larger proportions of IL-17+CD3- non-T cells in RA patients than in healthy controls (constitutive, 13.6% vs. 8.4%, and after stimulation with PMA/ionomycin 17.4% vs. 7.9% p < 0.001 in both cases). The source of IL-17 included CD3-CD56+ NK cells, CD3-CD14+ myeloid cells as well as the expected CD3+CD4+ Th17 cells and surprisingly a substantial number of CD3-CD19+ B cells. The presence of IL-17A-expressing B cells was confirmed by specific PCR of peripheral MACS-sorted CD19+ B cells, as well as by the analysis of different EBV-transformed B cell lines. Here we report for the first time that in addition to Th17 cells and different innate immune cells B cells also contribute to the IL-17A found in RA patients and healthy controls.  相似文献   

5.
Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.  相似文献   

6.
CD4+ Th17 cells induce antitumor immunity leading to the eradication of established tumors. However, the mechanism of antitumour immunity and CTL activation by Th17 cells and the distinct role of Th17 and Th17-activated CTLs in antitumor immunity are still elusive. In this study, we generated ovalbumin (OVA)-specific Th17 cells by cultivating OVA-pulsed dendritic cells with CD4+ T cells derived from transgenic OTII mice in the presence of IL-6, IL-23, TGF-β, and anti-IFN-γ antibody. We demonstrated that Th17 cells acquired major histocompatibility complex/peptide (pMHC)-I and expressed RORγt, IL-17, and IL-2. Th17 cells did not have any direct in vitro tumor cell–killing activity. However, Th17 cells were able to stimulate CD8+ CTL responses via IL-2 and pMHC I, but not IL-17 signaling, which play a major role in Th17-induced preventive immunity against OVA-expressing B16 melanoma. Th17 cells stimulated the expression of CCL2 and CCL20 in lung tumor microenvironments promoting the recruitment of various inflammatory leukocytes (DCs, CD4+, and CD8+ T cells) stimulating more pronounced therapeutic immunity for early-stage (5-day lung metastases or 3 mm, s.c.) tumor than for well-established (6 mm, s.c.) tumor. The therapeutic effect of Th17 cells is associated with IL-17 and is mediated by Th17-stimulated CD8+ CTLs and other inflammatory leukocytes recruited into B16 melanoma via Th17-stimulated CCL20 chemoattraction. Taken together, our data elucidate a distinct role of Th17 and Th17-stimulated CD8+ CTLs in the induction of preventive and therapeutic antitumor immunity, which may greatly impact the development of Th17-based cancer immunotherapy.  相似文献   

7.
IL-22-producing CD4+ T cells (IL-22+CD4+ T cells) and Th22 cells (IL-22+IL-17?IFN-γ?CD4+ T cells) represent newly discovered T-cell subsets, but their nature, regulation, and clinical relevance in gastric cancer (GC) are presently unknown. In our study, the frequency of IL-22+CD4+ T cells in tumor tissues from 76 GC patients was significantly higher than that in tumor-draining lymph nodes, non-tumor, and peritumoral tissues. Most intratumoral IL-22+CD4+ T cells co-expressed IL-17 and IFN-γ and showed a memory phenotype. Locally enriched IL-22+CD4+ T cells positively correlated with increased CD14+ monocytes and IL-6 and IL-23 detection ex vivo, and in vitro IL-6 and IL-23 induced the polarization of IL-22+CD4+ T cells in a dose-dependent manner and the polarized IL-22+CD4+ T cells co-expressed of IL-17 and IFN-γ. Moreover, IL-22+CD4+ T-cell subsets (IL-22+IL-17+CD4+, IL-22+IL-17?CD4+, IL-22+IFN-γ+CD4+, IL-22+IFN-γ?CD4+, and IL-22+IL-17+IFN-γ+CD4+ T cells), and Th22 cells were also increased in tumors. Furthermore, higher intratumoral IL-22+CD4+ T-cell percentage and Th22-cell percentage were found in patients with tumor-node-metastasis stage advanced and predicted reduced overall survival. In conclusion, our data indicate that IL-22+CD4+ T cells and Th22 cells are likely important in establishing the tumor microenvironment for GC; increased intratumoral IL-22+CD4+ T cells and Th22 cells are associated with tumor progression and predict poorer patient survival, suggesting that tumor-infiltrating IL-22+CD4+ T cells and Th22 cells may be suitable therapeutic targets in patients with GC.  相似文献   

8.
Interleukin-26 (IL-26), a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by epithelial cells. IL-26 has been also reported overexpressed in Crohn''s disease, suggesting that it may be involved in the physiopathology of chronic inflammatory disorders. Here, we have analyzed the expression and role of IL-26 in rheumatoid arthritis (RA), a chronic inflammatory disorder characterized by joint synovial inflammation. We report that the concentrations of IL-26 are higher in the serums of RA patients than of healthy subjects and dramatically elevated in RA synovial fluids compared to RA serums. Immunohistochemistry reveals that synoviolin+ fibroblast-like synoviocytes and CD68+ macrophage-like synoviocytes are the main IL-26-producing cells in RA joints. Fibroblast-like synoviocytes from RA patients constitutively produce IL-26 and this production is upregulated by IL-1-beta and IL-17A. We have therefore investigated the role of IL-26 in the inflammatory process. Results show that IL-26 induces the production of the proinflammatory cytokines IL-1-beta, IL-6, and tumor necrosis factor (TNF)-alpha by human monocytes and also upregulates the expression of numerous chemokines (mainly CCL20). Interestingly, IL-26-stimulated monocytes selectively promote the generation of RORgamma t+ Th17 cells, through IL-1-beta secretion by monocytes. More precisely, IL-26-stimulated monocytes switch non-Th17 committed (IL-23R or CCR6 CD161) CD4+ memory T cells into Th17 cells. Finally, synovial fluids from RA patients also induce Th17 cell generation and this effect is reduced after IL-26 depletion. These findings show that IL-26 is constitutively produced by RA synoviocytes, induces proinflammatory cytokine secretion by myeloid cells, and favors Th17 cell generation. IL-26 thereby appears as a novel proinflammatory cytokine, located upstream of the proinflammatory cascade, that may constitute a promising target to treat RA and chronic inflammatory disorders.  相似文献   

9.
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.Subject terms: Cancer microenvironment, Extracellular signalling molecules  相似文献   

10.
Interleukin (IL)-17 is the signature cytokine of T helper 17 cells. The role of IL-17 in the tumor microenvironment is still controversial. Few studies describing IL-17 expression in ovarian cancer have been reported. We have therefore analyzed the in situ tumor expression of IL-17 in advanced ovarian cancer and the possible correlation of IL-17 expression with tumor-associated macrophages (TAMs) and with survival in advanced ovarian cancer. Clinical data of 104 patients with stage III–IV epithelial ovarian cancer at the Sun Yat-sen University Cancer Center between 2000 and 2008 were retrospectively reviewed. Immunohistochemical staining of IL-17 and CD163 (marker for TAMs) was performed. Our data showed that levels of IL-17 were significantly increased in ovarian cancer compared with normal ovarian tissues (P<0.001). The high IL-17 expression group included more patients with grade 1 tumors than the low IL-17 expression group (P=0.042). High IL-17 expression correlated with improved progression-free survival (PFS) in advanced ovarian cancer (P<0.001). However, no significant difference was observed in overall survival between the high and low IL-17 expression groups. Multivariate analysis revealed that the density of IL-17-producing cells was a positive prognostic factor for PFS (P=0.001). Moreover, a positive correlation between the density of IL-17-producing cells and TAMs was identified (r=0.354, P<0.001). Our results indicate that the infiltration of IL-17-producing cells might contribute to improved PFS in advanced ovarian cancer. Our findings provide a new insight into the complex role of IL-17 in the tumor microenvironment of ovarian cancer.  相似文献   

11.
Interleukin-17 (IL-17) is produced by a subset of CD4+ T helper (Th) lymphocytes known as Th17 cells. In humans, IL-1β, enhanced by IL-6 and IL-23 is crucial for differentiation of these cells. IL-17 evokes inflammation and is involved in host defence against microorganisms, although little is known about its role in diseases caused by non-tuberculous mycobacteria. The genus Mycobacterium contains both obligate and opportunistic pathogens as well as saprophytes, and the mycobacterial cell envelope is unique in its abundance of lipids. Here we investigated IL-17 and IL-23 production in human PBMC in response to intact UV-inactivated mycobacteria and mycobacterial surface lipids from two opportunistic (Mycobacterium avium and Mycobacterium abscessus) and one generally non-pathogenic (Mycobacterium gordonae) species. Representative Gram-positive (Enterococcus faecalis, Streptococcus mitis) and Gram-negative (Escherichia coli) bacteria were included as controls. Intact mycobacteria induced production of large amounts of IL-17, while IL-17 responses to control bacteria were negligible. Purified CD4+ T cells, but not CD4-depleted cell fractions, produced this IL-17. Isolated mycobacterial surface lipids induced IL-17, but not IL-23 production. The ability of the non-tuberculous mycobacteria to induce IL-17 production in CD4+ T cells was the same regardless of the pathogenic potential of the particular mycobacterial species.  相似文献   

12.
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45high/CD11b+ population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.  相似文献   

13.
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.  相似文献   

14.
The recent finding that Th17 infiltration of ovarian tumors positively predicts patient outcomes suggests that Th17 responses play a protective role in ovarian tumor immunity. This observation has led to the question of whether Th17 cells could be induced or expanded to therapeutic advantage by tumor vaccination. In this study, we show that treatment of ovarian tumor antigen-loaded, cytokine-matured human dendritic cells (DC) with a combination of IL-15 and a p38 MAP kinase inhibitor offers potent synergy in antagonism of CD4+ Treg induction and redirection toward CD4+ Th17 responses that correlate with strong CD8+ cytotoxic T lymphocyte (CTL) activation. Ovarian tumor antigen-specific CD4+ T cells secrete high levels of IL-17 and show reduced expression of CTLA-4, PD-1, and Foxp3 following activation with IL-15/p38 inhibitor-treated DC. We further show that modulation of p38 MAPK signaling in DC is associated with reduced expression of B7-H1 (PD-L1), loss of indoleamine 2,3-dioxygenase activity, and increased phosphorylation of ERK 1/2 MAPK. These observations may allow the development of innovative DC vaccination strategies to boost Th17 immunity in ovarian cancer patients.  相似文献   

15.
In the present study, we studied the expression of T-bet, a key marker for type 1 immune responses, within the tumor microenvironment of gastric cancer, and analyzed its association with clinicopathological parameters. One hundred and fifty-two archival paraffin-embedded gastric tumor tissues were collected, and the expression of T-bet in these cancer tissue specimens was examined by immunohistochemistry. T-bet+ tumor-infiltrating lymphocytes (TILs) in some gastric cancer tissues were further characterized by flow cytometric analysis. The density of T-bet+ TILs in gastric cancer tissues in relation to patient’s clinicopathological parameters and postoperative prognosis has been analyzed. Herein, we have found significant increases in T-bet+ lymphocytes in tumor tissues as compared with normal stomach tissues, gastritis tissues or gastric polyp specimens. T-bet+ cells mainly consisted of CD4+, CD8+ and CD56+ TILs. In addition, lower numbers of T-bet+ TILs were associated with poor clinicopathological parameters such as invasion to muscular layer, larger tumor size and advanced cancer stages. Moreover, patients with higher numbers of T-bet+ TILs have longer disease-free survival and overall survival. Thus, our study supports the idea that tumor growth elicits spontaneous type 1 cellular immune responses and tumor progression is associated with suppression of antitumor immunity. T-bet expression within tumor can serve as a prognostic indicator for gastric cancer and a potential biomarker for immunotherapy.  相似文献   

16.
Disrupting tumor-mediated mechanisms suppressing host immunity represents a novel approach to tumor immunotherapy. Depletion of regulatory T cells (Tregs) increases endogenous anti-tumor immunity and the efficacy of active immunotherapy in experimental tumor models. HLA-A2.1/HLA-DR1 (A2.1/DR1) × BALB- neuT + (neuT +) triple transgenic mice represent an improvement over neuT + mice for evaluating vaccination regimens to overcome tolerance against HER-2/neu. We questioned whether depletion of Tregs with Denileukin diftitox (Ontak) enhances the efficacy of a therapeutic vaccine consisting of HER-2(85–94) (p85) CTL and HER-2(776–790) (p776) Th peptides against the growth of TUBO.A2 transplantable tumor in male A2.1/DR1 × neuT + Tg mice. While the therapeutic vaccine primed the tumor-reactive CD8+ CTLs and CD4+ effector T lymphocytes (Teffs) compartment, inducing activation, tumor infiltration, and tumor rejection or delay in tumor growth, treatment with Ontak 1 day prior to vaccination resulted in enhanced CD4+ and CD8+ T-cell-mediated vaccine-specific immune responses in the periphery. This was closely associated with greater infiltration and a striking change in the intratumor balance of Tregs and vaccine-specific CTLs/Teffs that directly correlated with markedly enhanced antitumor activity. The data suggest that Tregs control both CD4+ and CD8+ T-cell activity within the tumor, emphasize the importance of the intratumor ratio of vaccine-specific lymphocytes to Tregs, and demonstrate significant inversion of this ratio and correlation with tumor rejection during Ontak/vaccine immunotherapy.  相似文献   

17.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

18.
The proinflammatory cytokine interleukin 17 (IL-17) is considered to play a crucial role in diverse human tumors; however, its role in disease progression remains controversial. This study investigated the cellular source and distribution of IL-17 in esophageal squamous cell carcinoma (ESCC) in situ and determined its prognostic value. Immunohistochemistry, immunofluorescence and immunoelectron microscopy were used to identify IL-17-expressing cells in ESCC tissues, paying particular attention to their anatomic localization. Kaplan–Meier analysis and Cox proportional hazards regression models were applied to estimate overall survival in 215 ESCC patients with long-term follow-up (>10 years). The results showed that mast cells, but not T cells or macrophages, were the predominant cell type expressing IL-17 in ESCC tissues. Unexpectedly, these IL-17+ cells were highly enriched in the muscularis propria rather than the corresponding tumor nest (p < 0.0001). The density of IL-17+ cells in muscularis propria was inversely associated with tumor invasion (p = 0.016) and served as an independent predictor of favorable survival (p = 0.007). Moreover, the levels of IL-17+ cells in muscularis propria were positively associated with the density of effector CD8+ T cells and activated macrophages in the same area (both p < 0.0001). This finding suggested that mast cells may play a significant role in tumor immunity by releasing IL-17 at a previously unappreciated location, the muscularis propria, in ESCC tissues, which could serve as a potential prognostic marker and a novel therapeutic target for ESCC.  相似文献   

19.

Introduction

This study examines the expression of IL-17A-secreting cells within the inflamed synovium and the relationship to in vivo joint hypoxia measurements.

Methods

IL-17A expression was quantified in synovial tissue (ST), serum and synovial fluid (SF) by immunohistochemistry and MSD-plex assays. IL-6 SF and serum levels were measured by MSD-plex assays. Dual immunofluorescence for IL-17A was quantified in ST CD15+ cells (neutrophils), Tryptase+ (mast cells) and CD4+ (T cells). Synovial tissue oxygen (tpO2) levels were measured under direct visualisation at arthroscopy. Synovial infiltration was assessed using immunohistochemistry for cell specific markers. Peripheral blood mononuclear and polymorphonuclear cells were isolated and exposed to normoxic or 3% hypoxic conditions. IL-17A and IL-6 were quantified as above in culture supernatants.

Results

IL-17A expression was localised to mononuclear and polymorphonuclear (PMN) cells in inflamed ST. Dual immunoflourescent staining co-localised IL-17A expression with CD15+ neutrophils Tryptase+ mast cells and CD4+T cells. % IL-17A positivity was highest on CD15+ neutrophils, followed by mast cells and then CD4+T-cells. The number of IL-17A-secreting PMN cells significantly correlated with sublining CD68 expression (r = 0.618, p<0.01). IL-17A SF levels correlated with IL-6 SF levels (r = 0.675, p<0.01). Patients categorized according to tp02< or >20mmHg, showed those with low tp02<20mmHg had significantly higher IL-17A+ mononuclear cells with no difference observed for PMNs. Exposure of mononuclear and polymorphonuclear cells to 3% hypoxia, significantly induced IL-6 in mononuclear cells, but had no effect on IL-17A expression in mononuclear and polymorphonuclear cells.

Conclusion

This study demonstrates IL-17A expression is localised to several immune cell subtypes within the inflamed synovial tissue, further supporting the concept that IL-17A is a key mediator in inflammatory arthritis. The association of hypoxia with Il-17A expression appears to be indirect, probably through hypoxia-induced pro-inflammatory pathways and leukocyte influx within the joint microenvironment.  相似文献   

20.
IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4+ CD25high Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8+ cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4+ T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4+ T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4+ T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4+ T cell depletion reprograms CD4+ T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4+ T cell depletion, in human metastatic NB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号