首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

3.
  1. Download : Download high-res image (100KB)
  2. Download : Download full-size image
Highlights
  • •New MALDI MS imaging sample preparation workflow reveals tissue protease activity.
  • •Differential time- and inhibitor concentration-dependence confirm active proteases.
  • •Mouse gastric tumor displays high protease activity compared to surrounding tissue.
  • •Proteomic data and biochemical protease activity assay support MALDI MSI results.
  相似文献   

4.
Formalin fixed paraffin embedded (FFPE) tissues are a vast resource of annotated clinical samples. As such, they represent highly desirable and informative materials for the application of high definition genomics for improved patient management and to advance the development of personalized therapeutics. However, a limitation of FFPE tissues is the variable quality of DNA extracted for analyses. Furthermore, admixtures of non-tumor and polyclonal neoplastic cell populations limit the number of biopsies that can be studied and make it difficult to define cancer genomes in patient samples. To exploit these valuable tissues we applied flow cytometry-based methods to isolate pure populations of tumor cell nuclei from FFPE tissues and developed a methodology compatible with oligonucleotide array CGH and whole exome sequencing analyses. These were used to profile a variety of tumors (breast, brain, bladder, ovarian and pancreas) including the genomes and exomes of matching fresh frozen and FFPE pancreatic adenocarcinoma samples.  相似文献   

5.
The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging. Here, we demonstrate the use of liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM/MS) as an effective technique for such applications. An LC-MRM/MS method was developed to simultaneously quantify hundreds of peptides extracted from FFPE samples and was applied to the targeted measurement of 200 proteins in 48 triple-negative, 19 HER2-overexpressing, and 20 luminal A breast tumors. Quantitative information was obtained for 185 proteins, including known markers of breast cancer such as HER2, hormone receptors, Ki-67, or inflammation-related proteins. LC-MRM/MS results for these proteins matched immunohistochemistry or chromogenic in situ hybridization data. In addition, comparison of our results with data from the literature showed that several proteins representing potential biomarkers were identified as differentially expressed in triple-negative breast cancer samples. These results indicate that LC-MRM/MS assays can reliably measure large sets of proteins using the analysis of surrogate peptides extracted from FFPE samples. This approach allows to simultaneously quantify the expression of target proteins from various pathways in tumor samples. LC-MRM/MS is thus a powerful tool for the relative quantification of proteins in FFPE tissues and for biomarker discovery.  相似文献   

6.
7.

Background

Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.

Methods

FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging.

Results

The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections.

Conclusion

We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.  相似文献   

8.
Amyloidosis is a group of diseases caused by extracellular accumulation of fibrillar polypeptide aggregates. So far, diagnosis is performed by Congo red staining of tissue sections in combination with polarization microscopy. Subsequent identification of the causative protein by immunohistochemistry harbors some difficulties regarding sensitivity and specificity. Mass spectrometry based approaches have been demonstrated to constitute a reliable method to supplement typing of amyloidosis, but still depend on Congo red staining. In the present study, we used matrix‐assisted laser desorption/ionization mass spectrometry imaging coupled with ion mobility separation (MALDI‐IMS MSI) to investigate amyloid deposits in formalin‐fixed and paraffin‐embedded tissue samples. Utilizing a novel peptide filter method, we found a universal peptide signature for amyloidoses. Furthermore, differences in the peptide composition of ALλ and ATTR amyloid were revealed and used to build a reliable classification model. Integrating the peptide filter in MALDI‐IMS MSI analysis, we developed a bioinformatics workflow facilitating the identification and classification of amyloidosis in a less time and sample‐consuming experimental setup. Our findings demonstrate also the feasibility to investigate the amyloid's protein composition, thus paving the way to establish classification models for the diverse types of amyloidoses and to shed further light on the complex process of amyloidogenesis.  相似文献   

9.
A decade after its inception, MALDI imaging mass spectrometry has become a unique technique in the proteomics arsenal for biomarker hunting in a variety of diseases. At this stage of development, it is important to ask whether we can consider this technique to be sufficiently developed for routine use in a clinical setting or an indispensable technology used in translational research. In this report, we consider the contributions of MALDI imaging mass spectrometry and profiling technologies to clinical studies. In addition, we outline new directions that are required to align these technologies with the objectives of clinical proteomics, including: 1) diagnosis based on profile signatures that complement histopathology, 2) early detection of disease, 3) selection of therapeutic combinations based on the individual patient''s entire disease-specific protein network, 4) real time assessment of therapeutic efficacy and toxicity, 5) rational redirection of therapy based on changes in the diseased protein network that are associated with drug resistance, and 6) combinatorial therapy in which the signaling pathway itself is viewed as the target rather than any single “node” in the pathway.MS has become a versatile tool that we are familiar with in large part due to important electronic and informatics advancements. The ability to obtain the molecular weight is one of the first steps in the identification of a molecule. With the addition of primary structural information mass spectrometry has become a useful technique to identify molecules within complex mixtures.Biological specimens, such as tissues, urine, or plasma, are complex and highly heterogeneous, which makes them inherently difficult to analyze. Further research and developments are necessary to achieve reliable biological models for understanding and studying pathologies. Therefore, it is of primary importance to identify the constituents of these systems and subsequently understand how they function within the framework of the tissue. With regard to clinical proteomics, there is the added dimension of disease, and therefore, the main goal is to characterize the cellular circuitry with a focus on the impact of the disease and/or therapy on these cellular networks.Mass spectrometry has become a centerpiece technology predominantly in the field of proteomics. Nonetheless a more comprehensive understanding of the constituents of biological systems will be aided by determining the constituent distribution. This anatomical dimension has been added through mass spectrometry imaging (MSI)1 especially using MALDI-MSI.MALDI is an ion source that is well compatible with the introduction of raw materials and surfaces. Shortly after its introduction, MALDI was used for direct tissue profiling. The first applications were neurobiological studies on dissected organs from the mollusk Lymnaea stagnalis (18), crustaceans (9), and other mollusks (10, 11). More recently, MALDI was used to generate profiles from tissue sections and ion images using a scanning method to analyze the surface (12) (Fig. 1). This led to the first MALDI MS tissue section imaging micrographs in 1997 (1315). These studies were followed by 10 years of intense efforts to improve the sensitivity, reproducibility, data processing, tissue preservation, and preparation treatments to fully characterize the proteome leading to a clear improvement of molecular images (1639) (Fig. 2).Open in a separate windowFig. 1.Schematic representation of the MALDI-MSI work flow. After tissue sectioning and transfer onto a conductive and transparent sample plate, the MALDI matrix is deposited, and data are acquired by recording mass spectra according to a raster of points covering the surface to be analyzed. Mass spectra recorded with their coordinates on the tissue are processed, and molecular images of the localization of molecules can be reconstructed. a.u., arbitrary units; ITO, idium tin oxide.Open in a separate windowFig. 2.Ten years'' evolution from one of the first MALDI images presented in 1999 at the 47th ASMS Conference on Mass Spectrometry and Allied Topics (left) (reprinted with permission of Caprioli and co-workers (84)) and molecular images obtained by our group for mouse stem cells injected in brain tissue sections (right) (M. Wisztorski, C. Meriaux, M. Salzet, and I. Fournier, unpublished results).These developments led to clinical studies using MALDI-MSI technology. Clinical proteomics has many objectives including 1) diagnosis based on signatures as a complement to histopathology, 2) early disease detection, 3) individualized selection of therapeutic combinations that best target the patient''s entire disease-specific protein network, 4) real time assessment of therapeutic efficacy and toxicity, 5) rational redirection of therapy based on changes in the diseased protein network that are associated with drug resistance, and 6) combinatorial therapy in which the signaling pathway itself is viewed as the target rather than any single “node” in the pathway.Based on these key objectives, can we consider MALDI-MSI a mature technology for use in clinical studies? What is the potential impact of this technology in anatomy/pathology and disease? By reviewing each objective, do we have sufficient evidence that MALDI-MSI satisfies the criteria imposed by clinical proteomics? We will now specifically address each of these key points.  相似文献   

10.
11.
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.Since its introduction in the late 90s (1), MALDI imaging mass spectrometry (MS) technology has witnessed a phenomenal expansion. Initially introduced for the mapping of intact proteins from fresh frozen tissue sections (2), imaging MS is now routinely applied to a wide range of different compounds including peptides, proteins, lipids, metabolites, and xenobiotics (37). Numerous compound-specific sample preparation protocols and analytical strategies have been developed. These include tissue sectioning and handling (814), automated matrix deposition approaches and data acquisition strategies (1521), and the emergence of in situ tissue chemistries (2225). Originally performed on sections cut from fresh frozen tissue specimens, methodologies incorporating an in situ enzymatic digestion step prior to matrix application have been optimized to access the proteome locked in formalin-fixed paraffin-embedded tissue biopsies (2529). The possibility to use tissues preserved using non-cross-linking approaches has also been demonstrated (3032). These methodologies are of high importance for the study of numerous diseases because they potentially allow the retrospective analysis for biomarker validation and discovery of the millions of tissue biopsies currently stored worldwide in tissue banks and repositories.In the past decade, instrumentation for imaging MS has also greatly evolved. Whereas the first MS images were collected with time-of-flight instruments (TOF) capable of repetition rates of a few hertz, modern systems are today capable of acquiring data in the kilohertz range and above with improved sensitivity, mass resolving power, and accuracy, significantly reducing acquisition time and improving image quality (33, 34). Beyond time-of-flight analyzers, other MALDI-based instruments have been used such as ion traps (3537), Qq TOF instruments (3840), and trap-TOF (16, 41). Ion mobility technology has also been used in conjunction with imaging MS (4244). More recently, MALDI FT/ICR and Orbitrap mass spectrometers have been demonstrated to be extremely valuable instruments for the performance of imaging MS at very high mass resolving power (4547). These non-TOF-based systems have proven to be extremely powerful for the imaging of lower molecular weight compounds such as lipids, drugs, and metabolites. Home-built instrumentation and analytical approaches to probe tissues at higher spatial resolution (1–10 μm) have also been described (4850). In parallel to instrumentation developments, automated data acquisition, image visualization, and processing software packages have now also been developed by most manufacturers.To date, a wide range of biological systems have been studied using imaging MS as a primary methodology. Of strong interest are the organization and identification of the molecular composition of diseased tissues in direct correlation with the underlying histology and how it differs from healthy tissues. Such an approach has been used for the study of cancers (5154), neurologic disorders (5557), and other diseases (58, 59). The clinical potential of the imaging MS technology is enormous (7, 60, 61). Results give insights into the onset and progression of diseases, identify novel sets of disease-specific markers, and can provide a molecular confirmation of diagnosis as well as aide in outcome prediction (6264). Imaging MS has also been extensively used to study the development, functioning, and aging of different organs such as the kidney, prostate, epididymis, and eye lens (6570). Beyond the study of isolated tissues or organs, whole-body sections from several model animals such as leeches, mice, and rats have been investigated (7174). For these analyses, specialized instrumentation and protocols are necessary for tissue sectioning and handling (72, 73). Whole-body imaging MS opens the door to the study of the localization and accumulation of administered pharmaceuticals and their known metabolites at the level of entire organisms as well as the monitoring of their efficacy or toxicity as a function of time or dose (72, 73, 75, 76).There is considerable interest in determining the identification and localization of small biomolecules such as lipids in tissues because they are involved in many essential biological functions including cell signaling, energy storage, and membrane structure and function. Defects in lipid metabolism play a role in many diseases such as muscular dystrophy and cardiovascular disease. Phospholipids in tissues have been intensively studied by several groups (37, 40, 7783). In this respect, for optimal recovery of signal, several variables such as the choice of matrix for both imaging and fragmentation, solvent system, and instrument polarity have been investigated (20, 84). Particularly, the use of lithium cation adducts to facilitate phospholipid identification by tandem MS directly from tissue has also been reported (85). Of significant interest is the recent emergence of two new solvent-free matrix deposition approaches that perform exceptionally well for phospholipid imaging analyses. The first approach, described by Hankin et al. (86), consists in depositing the matrix on the sections through a sublimation process. The described sublimation system consists of sublimation glassware, a heated sand or oil bath (100–200 °C), and a primary vacuum pump (∼5 × 10−2 torr). Within a few minutes of initiating the sublimation process, an exceptionally homogeneous film of matrix forms on the section. The thickness of the matrix may be controlled by regulating pressure, temperature, and sublimation time. The second approach, described by Puolitaival et al.(87), uses a fine mesh sieve (≤20 μm) to filter finely ground matrix on the tissue sections. Agitation of the sieve results in passage of the matrix through the mesh and the deposition of a fairly homogeneous layer of submicrometer matrix crystals of the surface of the sections. The matrix density on the sections is controlled by direct observation using a standard light microscope. This matrix deposition approach was also found to be ideal to image certain drug compounds (88, 89). Both strategies allow very rapid production of homogeneous matrix coatings on tissue sections with a fairly inexpensive setup. Signal recovery was found to be comparable with those obtained by conventional spray deposition. With the appropriate size sublimation device or sieve, larger sections with dimensions of several centimeters such as those cut from mouse or rat whole bodies can also be rapidly and homogeneously coated.Here we present several examples of MALDI imaging MS of phospholipids from tissue sections using TOF mass spectrometers over a wide range of dimensions from whole-body sections (several centimeters), to individual organs (several millimeters), down to high spatial resolution imaging of selected tissue areas (hundreds of micrometers) at 10-μm lateral resolution and below. For all of these dimension ranges, technological considerations and practical aspects are discussed. In light of the imaging MS results, we also address issues faced for compound identification by tandem MS analysis performed directly on the sections. Finally, we discuss under “Perspective” our vision of the future of the field as well as the technological improvements and analytical tools that need to be improved upon and developed.  相似文献   

12.
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7–10 % of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE’s maps had pl 4–6, while the percentages of proteins with pl above 6 were 3–5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67–78 % of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.  相似文献   

13.
Preserved clinical material is a unique source for proteomic investigation of human disorders. Here we describe an optimized protocol allowing large scale quantitative analysis of formalin fixed and paraffin embedded (FFPE) tissue. The procedure comprises four distinct steps. The first one is the preparation of sections from the FFPE material and microdissection of cells of interest. In the second step the isolated cells are lysed and processed using ''filter aided sample preparation'' (FASP) technique. In this step, proteins are depleted from reagents used for the sample lysis and are digested in two-steps using endoproteinase LysC and trypsin. After each digestion, the peptides are collected in separate fractions and their content is determined using a highly sensitive fluorescence measurement. Finally, the peptides are fractionated on ''pipette-tip'' microcolumns. The LysC-peptides are separated into 4 fractions whereas the tryptic peptides are separated into 2 fractions. In this way prepared samples allow analysis of proteomes from minute amounts of material to a depth of 10,000 proteins. Thus, the described workflow is a powerful technique for studying diseases in a system-wide-fashion as well as for identification of potential biomarkers and drug targets.  相似文献   

14.
Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N‐glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor‐specific N‐glycan alterations in ovarian cancer development and progression. matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N‐glycan distribution on formalin‐fixed paraffin‐embedded ovarian cancer tissue sections from early‐ and late‐stage patients. Tumor‐specific N‐glycans are identified and structurally characterized by porous graphitized carbon‐liquid chromatography‐electrospray ionization‐tandem mass spectrometry (PGC‐LC‐ESI‐MS/MS), and then assigned to high‐resolution images obtained from MALDI‐MSI. Spatial distribution of 14 N‐glycans is obtained by MALDI‐MSI and 42 N‐glycans (including structural and compositional isomers) identified and structurally characterized by LC‐MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N‐glycan families are localized to the tumor regions of late‐stage ovarian cancer patients relative to early‐stage patients. Potential N‐glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3(GlcNAc)2, and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2. The distribution of these markers is evaluated using a tissue microarray of early‐ and late‐stage patients.  相似文献   

15.
Histochemical staining for enzymes is usually performed on frozen sections. This report lists the longer incubation times required to demonstrate esterase, acid phosphatase, β-galactosidase, and cytochrome oxidase in plastic embedded and routine paraffin embedded tissues. The sections embedded in plastic, i.e. water soluble methacrylate (Polyscience's JB-4) and cut at 2 μm, were far superior to frozen Sections and paraffin embedded sections both in tissue detail and in the localization of the histochemical reaction product.  相似文献   

16.
17.
MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest.  相似文献   

18.
Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL) and six malignant mesothelioma (MM) samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.  相似文献   

19.
  1. Download : Download high-res image (104KB)
  2. Download : Download full-size image
Highlights
  • •Quantitative substrate profiling method for characterizing peptidase specificity.
  • •Applicable to both purified peptidases and peptidases in complex biological samples.
  • •TMT labeling improves throughput, accuracy and reproducibility of the assay.
  • •Design of fluorescent probes to monitor peptidase activity based on substrate data.
  相似文献   

20.
The role of the marine alkaloid, norzoanthamine, in the colonial zoanthid Zoanthus sp. was previously unknown. High concentrations of norzoanthamine are present in the epidermal tissue of Zoanthus sp., as determined using protonated molecular ion peak mapping of norzoanthamine by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography quantification. Sodium dodecylsulfate polyacrylamide gel electrophoresis experiments indicate that norzoanthamine increases the resistance of collagen to damage from UV light, probably not via UV light absorption, but by strengthening collagen itself, thus suggesting that collagen strengthening may be the function of norzoanthamine in Zoanthus sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号