首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing visual search research has demonstrated that the receipt of reward will be beneficial for subsequent perceptual and attentional processing of features that have characterized targets, but detrimental for processing of features that have characterized irrelevant distractors. Here we report a similar effect of reward on location. Observers completed a visual search task in which they selected a target, ignored a salient distractor, and received random-magnitude reward for correct performance. Results show that when target selection garnered rewarding outcome attention is subsequently a.) primed to return to the target location, and b.) biased away from the location that was occupied by the salient, task-irrelevant distractor. These results suggest that in addition to priming features, reward acts to guide visual search by priming contextual locations of visual stimuli.  相似文献   

2.
Parallel visual search mechanisms have been reported previously only in mammals and birds, and not animals lacking an expanded telencephalon such as bees. Here we report the first evidence for parallel visual search in fish using a choice task where the fish had to find a target amongst an increasing number of distractors. Following two-choice discrimination training, zebrafish were presented with the original stimulus within an increasing array of distractor stimuli. We found that zebrafish exhibit no significant change in accuracy and approach latency as the number of distractors increased, providing evidence of parallel processing. This evidence challenges theories of vertebrate neural architecture and the importance of an expanded telencephalon for the evolution of executive function.  相似文献   

3.
The aim of this study was to clarify the nature of visual processing deficits caused by cerebellar disorders. We studied the performance of two types of visual search (top-down visual scanning and bottom-up visual scanning) in 18 patients with pure cerebellar types of spinocerebellar degeneration (SCA6: 11; SCA31: 7). The gaze fixation position was recorded with an eye-tracking device while the subjects performed two visual search tasks in which they looked for a target Landolt figure among distractors. In the serial search task, the target was similar to the distractors and the subject had to search for the target by processing each item with top-down visual scanning. In the pop-out search task, the target and distractor were clearly discernible and the visual salience of the target allowed the subjects to detect it by bottom-up visual scanning. The saliency maps clearly showed that the serial search task required top-down visual attention and the pop-out search task required bottom-up visual attention. In the serial search task, the search time to detect the target was significantly longer in SCA patients than in normal subjects, whereas the search time in the pop-out search task was comparable between the two groups. These findings suggested that SCA patients cannot efficiently scan a target using a top-down attentional process, whereas scanning with a bottom-up attentional process is not affected. In the serial search task, the amplitude of saccades was significantly smaller in SCA patients than in normal subjects. The variability of saccade amplitude (saccadic dysmetria), number of re-fixations, and unstable fixation (nystagmus) were larger in SCA patients than in normal subjects, accounting for a substantial proportion of scattered fixations around the items. Saccadic dysmetria, re-fixation, and nystagmus may play important roles in the impaired top-down visual scanning in SCA, hampering precise visual processing of individual items.  相似文献   

4.
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.  相似文献   

5.
Wong KF 《PloS one》2012,7(5):e37023
Negative priming (NP) was examined under a new paradigm wherein a target and distractors were temporally separated using rapid serial visual presentation (RSVP). The results from the two experiments revealed that (a) NP was robust under RSVP, such that the responses to a target were slower when the target served as a distractor in a previous trial than when it did not; (b) NP was found regardless of whether the distractors appeared before or after the targets; and (c) NP was stronger when the distractor was more distinctive. These findings are generally similar to those on NP in the spatial search task. The implications for the processes causing NP under RSVP are discussed in the current paper.  相似文献   

6.

Background

When two targets are presented in close temporal proximity amongst a rapid serial visual stream of distractors, a period of disrupted attention and attenuated awareness lasting 200–500 ms follows identification of the first target (T1). This phenomenon is known as the “attentional blink” (AB) and is generally attributed to a failure to consolidate information in visual short-term memory due to depleted or disrupted attentional resources. Previous research has shown that items presented during the AB that fail to reach conscious awareness are still processed to relatively high levels, including the level of meaning. For example, missed word stimuli have been shown to prime later targets that are closely associated words. Although these findings have been interpreted as evidence for semantic processing during the AB, closely associated words (e.g., day-night) may also rely on specific, well-worn, lexical associative links which enhance attention to the relevant target.

Methodology/Principal Findings

We used a measure of semantic distance to create prime-target pairs that are conceptually close, but have low word associations (e.g., wagon and van) and investigated priming from a distractor stimulus presented during the AB to a subsequent target (T2). The stimuli were words (concrete nouns) in Experiment 1 and the corresponding pictures of objects in Experiment 2. In both experiments, report of T2 was facilitated when this item was preceded by a semantically-related distractor.

Conclusions/Significance

This study is the first to show conclusively that conceptual information is extracted from distractor stimuli presented during a period of attenuated awareness and that this information spreads to neighbouring concepts within a semantic network.  相似文献   

7.
Rezec AA  Dobkins KR 《Spatial Vision》2004,17(4-5):269-293
Several previous visual search studies measuring reaction times have demonstrated scanning biases across the visual field (i.e. a tendency to begin a serial search in a particular region of space). In the present study, we measured visual discrimination thresholds for a target presented amongst distractors using displays that were short enough to greatly reduce the potential for serial (i.e. scanning) search. For both a motion and orientation task, subjects' performance was significantly better when the target appeared in the inferior, as compared to the superior, visual field (no differences were observed between left and right visual fields). These findings suggest that subjects may divide attention unevenly across the visual field when searching for a target amongst distractors, a phenomenon we refer to as 'attentional weighting'. To rule out the possibility that these visual field asymmetries were sensory in nature, thresholds were also measured for conditions in which subjects' attention was directed to the location of the target stimulus, either because it was presented alone in the display or because a spatial cue directed subjects' attention to the location of that target presented amongst distractors. Under these conditions, visual field asymmetries were smaller (or non-existent), suggesting that sensory factors (such as crowding) are unlikely to account for our results. In addition, analyses of set-size effects (obtained by comparing thresholds for a single target vs. the target presented amongst distractors) could be accounted for by an unlimited capacity model, suggesting that multiple stimuli can be processed simultaneously without any limitations at an early stage of sensory processing. Taken together, these findings suggest the possible existence of biases in attentional weighting at a late stage of processing. The bias appears to favor the inferior visual field, which may arise from the fact that there is more ecologically-relevant information in this region of space.  相似文献   

8.
Salient distractors draw our attention spontaneously, even when we intentionally want to ignore them. When this occurs, the real targets close to or overlapping with the distractors benefit from attention capture and thus are detected and discriminated more quickly. However, a puzzling opposite effect was observed in a search display with a column of vertical collinear bars presented as a task-irrelevant distractor [6]. In this case, it was harder to discriminate the targets overlapping with the salient distractor. Here we examined whether this effect originated from factors known to modulate attentional capture: (a) low probability—the probability occurrence of target location at the collinear column was much less (14%) than the rest of the display (86%), and observers might strategically direct their attention away from the collinear distractor; (b) attentional control setting—the distractor and target task interfered with each other because they shared the same continuity set in attentional task; and/or (c) lack of time to establish the optional strategy. We tested these hypotheses by (a) increasing to 60% the trials in which targets overlapped with the same collinear distractor columns, (b) replacing the target task to be connectivity-irrelevant (i.e., luminance discrimination), and (c) having our observers practice the same search task for 10 days. Our results speak against all these hypotheses and lead us to conclude that a collinear distractor impairs search at a level that is unaffected by probabilistic information, attentional setting, and learning.  相似文献   

9.
Successfully locating a dangerous or desirable object within a cluttered visual scene is a commonplace yet highly adaptive skill. In the laboratory, this ability is modeled by visual search experiments in which subjects try to find a target item surrounded by an array of distracting stimuli. Under certain conditions, targets that are distinguishable from distractors by virtue of having a particular combination of shared sensory features (e.g., a particular color and orientation) can be found rapidly regardless of the number of distractors. To explain this highly efficient localization of feature-conjunction targets, "guided search" theories propose that attention is directed in parallel to the individual features that define the target, which then stands out from the distractors because of additive facilitation of its feature signals. Here we recorded frequency-tagged potentials evoked in human visual cortex and found that color and orientation features of target stimuli are indeed facilitated by attention in a parallel and additive manner. This additive feature-enhancement mechanism, reported here for the first time, not only enables rapid guided search but also plays a broader role in directing and sustaining attention to multi-feature objects and keeping them perceptually distinct from background clutter.  相似文献   

10.
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.  相似文献   

11.

Background

Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements.

Methodology/Principal Findings

The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency.

Conclusions/Significance

We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.  相似文献   

12.
Multiple spotlights of attentional selection in human visual cortex   总被引:4,自引:0,他引:4  
McMains SA  Somers DC 《Neuron》2004,42(4):677-686
Spatially directed attention strongly enhances visual perceptual processing. The metaphor of the "spotlight" has long been used to describe spatial attention; however, there has been considerable debate as to whether spatial attention must be unitary or may be split between discrete regions of space. This question was addressed here through functional MR imaging of human subjects as they performed a task that required simultaneous attention to two briefly displayed and masked targets at locations separated by distractor stimuli. These data reveal retinotopically specific enhanced activation in striate and extrastriate visual cortical representations of the two attended stimuli and no enhancement at the intervening representation of distractor stimuli. This finding of two spotlights was obtained within a single cortical hemisphere and across the two hemispheres. This provides direct evidence that spatial attention can select, in parallel, multiple low-level perceptual representations.  相似文献   

13.
In laboratory visual search experiments, distractors are often statistically independent of each other. However, stimuli in more naturalistic settings are often correlated and rarely independent. Here, we examine whether human observers take stimulus correlations into account in orientation target detection. We find that they do, although probably not optimally. In particular, it seems that low distractor correlations are overestimated. Our results might contribute to bridging the gap between artificial and natural visual search tasks.  相似文献   

14.
Becker SI 《PloS one》2011,6(3):e17740
The present study examined the factors that determine the dwell times in a visual search task, that is, the duration the gaze remains fixated on an object. It has been suggested that an item's similarity to the search target should be an important determiner of dwell times, because dwell times are taken to reflect the time needed to reject the item as a distractor, and such discriminations are supposed to be harder the more similar an item is to the search target. In line with this similarity view, a previous study shows that, in search for a target ring of thin line-width, dwell times on thin linewidth Landolt C's distractors were longer than dwell times on Landolt C's with thick or medium linewidth. However, dwell times may have been longer on thin Landolt C's because the thin line-width made it harder to detect whether the stimuli had a gap or not. Thus, it is an open question whether dwell times on thin line-width distractors were longer because they were similar to the target or because the perceptual decision was more difficult. The present study de-coupled similarity from perceptual difficulty, by measuring dwell times on thin, medium and thick line-width distractors when the target had thin, medium or thick line-width. The results showed that dwell times were longer on target-similar than target-dissimilar stimuli across all target conditions and regardless of the line-width. It is concluded that prior findings of longer dwell times on thin linewidth-distractors can clearly be attributed to target similarity. As will be discussed towards the end, the finding of similarity effects on dwell times has important implications for current theories of visual search and eye movement control.  相似文献   

15.
We investigated the contribution of the inferior temporal (IT) cortical neurons to the active maintenance of internal representations. The activity of single neurons in the IT cortex was recorded while the monkeys performed a sequential-type associative memory task in which distractor stimuli interrupted the delay epoch between the cue and target (paired-associate) stimuli. For each neuron, information about each stimulus conveyed by the delay activity was estimated as a coefficient of multiple regression analysis. We found that target information derived from long-term memory (LTM) persisted despite the distractors. By contrast, cue information derived from the visual system was attenuated and frequently replaced by distractor information. These results suggest that LTM-derived information required for upcoming behavior is actively maintained in the IT neurons, whereas visually derived information tends to be updated irrespective of behavioral relevance.  相似文献   

16.

Background

In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear.

Methodology/Principal Findings

We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively.

Conclusions

The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.  相似文献   

17.
Along with target amplification, distractor inhibition is regarded as a major contributor to selective attention. Some theories suggest that the strength of inhibitory processing is proportional to the salience of the distractor (i.e., inhibition reacts to the distractor intensity). Other theories suggest that the strength of inhibitory processing does not depend on the salience of the distractor (i.e., inhibition does not react to the distractor intensity). The present study aimed to elucidate the relationship between the intensity of a distractor and its subsequent inhibition during focused attention. A flanker task with a variable distractor-target stimulus-onset asynchrony (SOA) was used to measure both distractor interference and distractor inhibition. We manipulated the intensity of the distractor in two separate ways, by varying its distance from the target (Experiment 1) and by varying its brightness (Experiment 2). The results indicate that more intense distractors were associated with both increased interference and stronger distractor inhibition. The latter outcome provides novel support for the reactive inhibition hypothesis, which posits that inhibition reacts to the strength of distractor input, such that more salient distractors elicit stronger inhibition.  相似文献   

18.
Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC), which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a) saccades deviate towards close distractors and away from remote distractors, and b) the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1), or by varying the eccentricity of the target and distractor (Experiment 2).  相似文献   

19.
Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.  相似文献   

20.
The present study investigated the inhibitory effect of visual distractors on the latency of saccades made by hemianopic and normal human subjects. The latency of saccades made by hemianopic subjects to stimuli in their intact visual field was not affected by visual distractors presented within their hemianopic field. In contrast, the latency of saccades made by normal subjects was increased significantly under distractor conditions. The latency increase was larger for temporal than nasal distractors. The results are inconsistent with previous proposals that the crossed retinotectal pathway from the nasal hemiretina to the superior colliculus may mediate a blindsight inhibitory effect when distractors appear within a hemianopic temporal visual field. Instead, the distractor effect appears to reflect the normal processes involved in saccade target selection which may be mediated by a circuit involving both cortical and subcortical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号