首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The significance of divalent calcium ions (Ca2+) to cell cycle progression has been a subject of study for several decades, with a regulatory role for Ca2+ suggested in distinct cell types and multiple organisms. Our interest in proliferative vascular diseases led us to focus on mammalian vascular smooth muscle cells (VSMC) in particular, in which we and others had shown that a coordinate elevation in the intracellular free Ca2+ concentration is required for G1 to S phase cell cycle progression. However, the molecular basis for this Ca2+-sensitive cell cycle transition was not known.Our recent discovery of a functional protein-protein interaction between the late G1-active cyclin E1 and the major calcium signal-transducing factor Calmodulin (CaM) sheds new light on the mechanism(s) through which Ca2+ concentrations regulate cell cycle. Having identified a CaM-binding site on cyclin E1, our studies support a direct role for CaM in mediating Ca2+-sensitive cyclin E/cdk2 activity and G1 to S phase transitions in VSMC. The CaM binding site identified on cyclin E1 has a Kd for CaM consistent with that of known CaM-binding proteins, and is composed of a 22 amino acids N-terminal sequence that is highly conserved across several mammalian species. Deletion of this binding site abolished CaM binding and Ca2+-sensitive cyclin E/cdk2 activity.Here we provide our perspectives on the literature supporting a role for Ca2+ in cell cycle regulation, focusing on the evidence implicating CaM in this functionality, and discuss the potential for therapeutic modulation of CaM-dependent cell cycle machinery.  相似文献   

3.
To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.  相似文献   

4.
5.
6.
7.
About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments.  相似文献   

8.
9.
10.
11.
In this issue of The Journal, an article by Schalkwyk et al.1 shows the landscape of allele-specific DNA methylation (ASM) in the human genome. ASM has long been studied as a hallmark of imprinted genes, and a chromosome-wide version of this phenomenon occurs, in a random fashion, during X chromosome inactivation in female cells. But the type of ASM motivating the study by Schalkwyk et al. is different. They used a high-resolution, methylation-sensitive SNP array (MSNP) method for genome-wide profiling of ASM in total peripheral-blood leukocytes (PBL) and buccal cells from a series of monozygotic twin pairs. Their data bring a new level of detail to our knowledge of a newly recognized phenomenon—nonimprinted, sequence-dependent ASM. They document the widespread occurrence of this phenomenon among human genes and discuss its basic implications for gene regulation and genetic-epigenetic interactions. But this paper and recent work from other laboratories2,3 raises the possibility of a more immediate and practical application for ASM mapping, namely to help extract maximum information from genome-wide association studies.  相似文献   

12.
13.
Polar Auxin Transport: New Support for an Old Model   总被引:7,自引:1,他引:6       下载免费PDF全文
M. Estelle 《The Plant cell》1998,10(11):1775-1778
  相似文献   

14.
15.
16.
17.
18.
The EE subunit of horse liver alcohol dehydrogenase (HLADH-EE) has been subcloned in pRSETb vector to generate a fusion His-tag protein. The migration from a multistep purification protocol for this well-known enzyme to a single-step has been successfully achieved. Several adjustments to the traditional purification procedure for His-tag proteins have been made to retain protein activity. A full characterization of the fusion enzyme has been carried out and compared with the native one. The K m for EtOH, NAD and NADH in the His-tag version of HLADH are in line with the ones reported in literature for the native enzyme. A shift in optimal pH activity is also observed. The enzyme retains the same stability and quaternary structure as the wild type and can therefore be easily used instead of the native HLADH for biotechnological applications.  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) participate in signaling initiated by a wide variety of extracellular stimuli. MAPKs are most commonly activated by a series of phosphorylation events in which one kinase phosphorylates another, the “MAPK cascade”. The cascade concludes with the dual phosphorylation of MAPKs on a conserved Thr-X-Tyr motif. In the case of the p38 MAPK, an exception to this paradigm has been found when signaling via the T cell antigen receptor (TCR). Rather than trigger the MAPK cascade, TCR-mediated stimulation activates proximal tyrosine kinases, which results in the phosphorylation of p38 on a noncanonical activating residue, Tyr-323. This phosphorylation activates p38 to phosphorylate third party substrates as well as its own Thr-X-Tyr motif. Here we discuss the structural and functional implications of this alternative p38 activation pathway, which may provide a new target for tissue-specific pharmacologic inhibition.  相似文献   

20.
植物DNA甲基化   总被引:6,自引:0,他引:6  
DNA甲基化是造成植物转录水平基因沉默的主要原因。从DNA甲基化的发生机理,DNA甲基化抑制基因转录以及调控基因转录的方式简要地介绍了真核生物中DNA甲基化的功能和调控机制方面的一些研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号