首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relapse of cancer after first line therapy with anticancer agents is a common occurrence. This recurrence is believed to be due to the presence of a subpopulation of cells called cancer stem cells in the tumor. Therefore, a combination therapy which is susceptible to both types of cells is desirable. Delivery of this combinatorial approach in a nanoparticulate system will provide even a better therapeutic outcome in tumor targeting. The objective of this study was to develop and characterize nanoparticulate system containing two anticancer agents (cyclopamine and paclitaxel) having different susceptibilities toward cancer cells. Both drugs were entrapped in glyceryl monooleate (GMO)-chitosan solid lipid as well as poly(glycolic-lactic) acid (PLGA) nanoparticles. The cytotoxicity studies were performed on DU145, DU145 TXR, and Wi26 A4 cells. The particle size of drug-loaded GMO-chitosan nanoparticles was 278.4 ± 16.4 nm with a positive zeta potential. However, the PLGA particles were 234.5 ± 6.8 nm in size with a negative zeta potential. Thermal analyses of both nanoparticles revealed that the drugs were present in noncrystalline state in the matrix. A sustained in vitro release was observed for both the drugs in these nanoparticles. PLGA blank particles showed no cytotoxicity in all the cell lines tested, whereas GMO-chitosan blank particles showed substantial cytotoxicity. The types of polymer used for the preparation of nanoparticles played a major role and affected the in vitro release, cytotoxicity, and uptake of nanoparticles in the all the cell lines tested.KEY WORDS: cancer stem cells, cyclopamine, glyceryl monooleate, nanoparticles, PLGA  相似文献   

2.
A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR). These nanoparticles are operated under a broad range of AMF conditions, with frequency f varying between 0.2 and 30 MHz; field strength H ranging from 4 to 10 kA m−1; and concentration cMNP varying from 0.02 to 3.5 mg ml−1. At high frequency field (∼30 MHz), non specific heating dominates and ΔT correlates with the electrical conductivity of the medium. At low frequency field (<1 MHz), non specific heating is negligible and the relaxation of the SPIO within the AMF is the sole energy source. We show that the ΔT of the medium grows linearly with cMNP, whereas the SARMNP of the magnetic nanoparticles is independent of cMNP and varies linearly with f and H2. Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue >42°C) and thermal ablation (Ttissue >50°C) are derived in terms of cMNP, operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration – systemic versus intratumor injection – depending on the magnetic and biodistribution properties of the nanoparticles.  相似文献   

3.
4.

Purpose

To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn.

Methods

Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA) synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry.

Results

Pirfenidone prevented (P<0.05) increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05) reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn.

Conclusion

Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases.  相似文献   

5.
目的:构建一种能结合钛表面的载药纳米粒及钛-载药纳米复合材料的组装和性质研究。方法:(1)多巴胺修饰的非离子表面活性剂多巴胺-泊洛沙姆188(Dop-Poloxamer188)的合成和检测;(2)Dop-Poloxamer188作为表面活性剂、PLGA作为油相基质,制备纳米粒及纳米粒载药和表征;(3)钛片的预处理及钛片与修饰后的纳米粒的结合;(4)纳米粒修饰后的钛表面的表征。结果:新合成的Dop-Poloxamer188在285 nm左右有紫外吸收峰,说明多巴胺成功的修饰在Poloxamer188的两端;Dop-Poloxamer188能和PLGA制备出很好的纳米粒,平均粒径在110 nm左右,PDI小于0.1;多巴胺修饰的纳米粒与钛片通过简单的浸渍过程结合后,通过水接触角、场发射扫面电镜(Fe-SEM)、荧光显微镜、X射线光电子能谱(XPS)等仪器检测都显示多巴胺修饰的纳米粒成功且牢固的修饰在钛片表面。结论:成功达到钛表面的载药纳米粒修饰的目的,为钛种植体的载药系统提供了新的思路和方法。  相似文献   

6.
Zhang Z  Feng SS 《Biomacromolecules》2006,7(4):1139-1146
Polysorbate 80 (Tween 80) has been widely used as an emulsifier with excellent effects in nanoparticles technology for biomedical applications. This work was thus triggered to synthesize poly(lactide)/Tween 80 copolymers with various copolymer blend ratio, which were synthesized by ring-opening polymerization and characterized by 1H NMR and TGA. Nanoparticles of poly(lactide)/Tween 80 copolymers were prepared by the dialysis method without surfactants/emulsifiers involved. Paclitaxel was chosen as a prototype anticancer drug due to its excellent therapeutic effects against a wide spectrum of cancers. The drug-loaded nanoparticles of poly(lactide)/Tween 80 copolymers were then characterized by various state-of-the-art techniques, including laser light scattering for particles size and size distribution, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) for surface morphology; laser Doppler anemometry for zeta potential; differential scanning calorimetry (DSC) for the physical status of the drug encapsulated in the polymeric matrix; X-ray photoelectron spectrometer (XPS) for surface chemistry; high performance liquid chromatography (HPLC) for drug encapsulation efficiency; and in vitro drug release kinetics. HT-29 cells and Glioma C6 cells were used as an in vitro model of the GI barrier for oral chemotherapy and a brain cancer model to evaluate in vitro cytotoxicity of the paclitaxel-loaded nanoparticles. The viability of C6 cells was decreased from 37.4 +/- 4.0% for poly(D,L-lactide-co-glycolic acid) (PLGA) nanoparticles to 17.8 +/- 4.2% for PLA-Tween 80-10 and 12.0 +/- 5.4% for PLA-Tween 80-20 copolymer nanoparticles, which was comparable with that for Taxol at the same 50 microg/mL drug concentration.  相似文献   

7.
Incorporation of drug-loaded nanoparticles into swellable and respirable microparticles is a promising strategy to avoid rapid clearance from the lung and achieve sustained drug release. In this investigation, a copolymer of polyethylene glycol grafted onto phthaloyl chitosan (PEG-g-PHCs) was synthesized and then self-assembled with ciprofloxacin to form drug-loaded nanoparticles. The nanoparticles and free drug were encapsulated into respirable and swellable alginate micro hydrogel particles and assessed as a novel system for sustained pulmonary drug delivery. Particle size, morphology, dynamic swelling profile, and in vitro drug release were investigated. Results showed that drug-loaded nanoparticles with size of 218 nm were entrapped into 3.9-μm micro hydrogel particles. The dry nano-in-micro hydrogel particles exhibited a rapid initial swelling within 2 min and showed sustained drug release. Preliminary in vivo pharmacokinetic studies were performed with formulations delivered to rats by intratracheal insufflation. Ciprofloxacin concentrations in plasma and in lung tissue and lavage were measured up to 7 h. The swellable particles showed lower ciprofloxacin levels in plasma than the controlled group (a mixture of lactose with micronized ciprofloxacin), while swellable particles achieved higher concentrations in lung tissue and lavage, indicating the swellable particles could be used for controlling drug release and prolonging lung drug concentrations.KEY WORDS: alveolar macrophage, antibiotics, cross-linking, hydrogel swelling, intratracheal insufflation  相似文献   

8.
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.  相似文献   

9.

Background

Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.

Results

Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.

Conclusion

We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.  相似文献   

10.

Introduction

Polymer-based delivery systems offer innovative intra-cavity administration of drugs, with the potential to better target micro-deposits of cancer cells in brain parenchyma beyond the resected cavity. Here we evaluate clinical utility, toxicity and sustained drug release capability of a novel formulation of poly(lactic-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) microparticles.

Methods

PLGA/PEG microparticle-based matrices were molded around an ex vivo brain pseudo-resection cavity and analyzed using magnetic resonance imaging and computerized tomography. In vitro toxicity of the polymer was assessed using tumor and endothelial cells and drug release from trichostatin A-, etoposide- and methotrexate-loaded matrices was determined. To verify activity of released agents, tumor cells were seeded onto drug-loaded matrices and viability assessed.

Results

PLGA/PEG matrices can be molded around a pseudo-resection cavity wall with no polymer-related artifact on clinical scans. The polymer withstands fractionated radiotherapy, with no disruption of microparticle structure. No toxicity was evident when tumor or endothelial cells were grown on control matrices in vitro. Trichostatin A, etoposide and methotrexate were released from the matrices over a 3-4 week period in vitro and etoposide released over 3 days in vivo, with released agents retaining cytotoxic capabilities. PLGA/PEG microparticle-based matrices molded around a resection cavity wall are distinguishable in clinical scanning modalities. Matrices are non-toxic in vitro suggesting good biocompatibility in vivo. Active trichostatin A, etoposide and methotrexate can be incorporated and released gradually from matrices, with radiotherapy unlikely to interfere with release.

Conclusion

The PLGA/PEG delivery system offers an innovative intra-cavity approach to administer chemotherapeutics for improved local control of malignant brain tumors.  相似文献   

11.

Objective

To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis.

Methods

RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression.

Results

The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01).

Conclusions

RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.  相似文献   

12.
13.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

14.
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.  相似文献   

15.
Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible member of the aliphatic polyester family of biodegradable polymers. PLGA has long been a popular choice for drug delivery applications, particularly since it is already FDA-approved for use in humans in the form of resorbable sutures. Hydrophobic and hydrophilic drugs are encapsulated in PLGA particles via single- or double-emulsion. Briefly, the drug is dissolved with polymer or emulsified with polymer in an organic phase that is then emulsified with the aqueous phase. After the solvent has evaporated, particles are washed and collected via centrifugation for lyophilization and long term storage. PLGA degrades slowly via hydrolysis in aqueous environments, and encapsulated agents are released over a period of weeks to months. Although PLGA is a material that possesses many advantages for drug delivery, reproducible formation of nanoparticles can be challenging; considerable variability is introduced by the use of different equipment, reagents batch, and precise method of emulsification. Here, we describe in great detail the formation and characterization of microparticles and nanoparticles formed by single- or double-emulsion using the emulsifying agent vitamin E-TPGS. Particle morphology and size are determined with scanning electron microscopy (SEM). We provide representative SEM images for nanoparticles produced with varying emulsifier concentration, as well as examples of imaging artifacts and failed emulsifications. This protocol can be readily adapted to use alternative emulsifiers (e.g. poly(vinyl alcohol), PVA) or solvents (e.g. dichloromethane, DCM).  相似文献   

16.
The present study describes the biotransformation of 2,4,6-trinitrotoluene (TNT) (220 μM) by using anaerobic sludge (10%, vol/vol) supplemented with molasses (3.3 g/liter). Despite the disappearance of TNT in less than 15 h, roughly 0.1% of TNT was attributed to mineralization (14CO2). A combination of solid-phase microextraction–gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry identified two distinctive cycles in the degradation of TNT. One cycle was responsible for the stepwise reduction of TNT to eventually produce triaminotoluene (TAT) in relatively high yield (160 μM). The other cycle involved TAT and was responsible for the production of azo derivatives, e.g., 2,2′,4,4′-tetraamino-6,6′-azotoluene (2,2′,4,4′-TA-6,6′-azoT) and 2,2′,6,6′-tetraamino-4,4′-azotoluene (2,2′,6,6′-TA-4,4′-azoT) at pH 7.2. These azo compounds were also detected when TAT was treated with the anaerobic sludge but not with an autoclaved sludge, suggesting the biotic nature of their formation. When the anaerobic conditions in the TAT-containing culture medium were removed by aeration and/or acidification (pH 3), the corresponding phenolic compounds, e.g., hydroxy-diaminotoluenes and dihydroxy-aminotoluenes, were observed at room temperature. Trihydroxytoluene was detected only after heating TAT in water at 100°C. When 13CH3-labeled TNT was used as the N source in the above microcosms, we were unable to detect 13C-labeled p-cresol or [13CH3]toluene, indicating the absence of denitration or deamination in the biodegradation process. The formation and disappearance of TAT were not accompanied by mineralization, suggesting that TAT acted as a dead-end metabolite.  相似文献   

17.

Background

The aim of this study was to evaluate whether arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) can reliably quantify perfusion deficit as compared to dynamic susceptibility contrast (DSC) perfusion MRI.

Methods

Thirty-nine patients with acute ischemic stroke in the anterior circulation territory were recruited. All underwent ASL and DSC MRI perfusion scans within 30 hours after stroke onset and 31 patients underwent follow-up MRI scans. ASL cerebral blood flow (CBF) and DSC time to maximum (Tmax) maps were used to calculate the perfusion defects. The ASL CBF lesion volume was compared to the DSC Tmax lesion volume by Pearson''s correlation coefficient and likewise the ASL CBF and DSC Tmax lesion volumes were compared to the final infarct sizes respectively. A repeated measures analysis of variance and least significant difference post hoc test was used to compare the mean lesion volumes among ASL CBF, DSC Tmax >4–6 s and final infarct.

Results

Mean patient age was 72.6 years. The average time from stroke onset to MRI was 13.9 hours. The ASL lesion volume showed significant correlation with the DSC lesion volume for Tmax >4, 5 and 6 s (r = 0.81, 0.82 and 0.80; p<0.001). However, the mean lesion volume of ASL (50.1 ml) was significantly larger than those for Tmax >5 s (29.2 ml, p<0.01) and Tmax >6 s (21.8 ml, p<0.001), while the mean lesion volumes for Tmax >5 or 6 s were close to mean final infarct size.

Conclusion

Quantitative measurement of ASL perfusion is well correlated with DSC perfusion. However, ASL perfusion may overestimate the perfusion defects and therefore further refinement of the true penumbra threshold and improved ASL technique are necessary before applying ASL in therapeutic trials.  相似文献   

18.
The resting membrane of a barnacle muscle fiber is mostly permeable to cations in a solution of pH 7.7 whereas it becomes primarily permeable to anions if the pH is below 4.0. Mechanisms of ion permeation for various monovalent cations and anions were investigated at pH 7.7 and 3.9, respectively. Permeability ratios were obtained from the relationship between the membrane potential and the concentration of the test ions, and ionic conductances from current-voltage relations of the membrane. The permeability sequence for anions (SCN > I > NO3 > Br > ClO3 > Cl > BrO3 > IO3) was different from the conductance sequence for anions (Br, Cl > ClO3, NO3 > SCN). In contrast, the permeability and conductance sequences were identical for cations (K > Rb > Cs > Na > Li). The results suggest that anion permeation is governed by membrane charges while cation permeation is via some electrically neutral mechanism.  相似文献   

19.
The blood–brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB.  相似文献   

20.

Background

The accumulation of visceral adipose tissue that occurs with normal aging is associated with increased cardiovascular risks. However, the clinical significance, biological effects, and related cardiometabolic derangements of body-site specific adiposity in a relatively healthy population have not been well characterized.

Materials and Methods

In this cross-sectional study, we consecutively enrolled 608 asymptomatic subjects (mean age: 47.3 years, 27% female) from 2050 subjects undergoing an annual health survey in Taiwan. We measured pericardial (PCF) and thoracic peri-aortic (TAT) adipose tissue volumes by 16-slice multi-detector computed tomography (MDCT) (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA) and related these to clinical characteristics, body fat composition (Tanita 305 Corporation, Tokyo, Japan), coronary calcium score (CCS), serum insulin, high-sensitivity C-reactive protein (Hs-CRP) level and circulating leukocytes count. Metabolic risk was scored by Adult Treatment Panel III guidelines.

Results

TAT, PCF, and total body fat composition all increased with aging and higher metabolic scores (all p<0.05). Only TAT, however, was associated with higher circulating leukocyte counts (ß-coef.:0.24, p<0.05), serum insulin (ß-coef.:0.17, p<0.05) and high sensitivity C-reactive protein (ß-coef.:0.24, p<0.05). These relationships persisted after adjustment in multivariable models (all p<0.05). A TAT volume of 8.29 ml yielded the largest area under the receiver operating characteristic curve (AUROC: 0.79, 95%CI: 0.74–0.83) to identify metabolic syndrome. TAT but not PCF correlated with higher coronary calcium score after adjustment for clinical variables (all p<0.05).

Conclusion

In our study, we observe that age-related body-site specific accumulation of adipose tissue may have distinct biological effects. Compared to other adiposity measures, peri-aortic adiposity is more tightly associated with cardiometabolic risk profiles and subclinical atherosclerosis in a relatively healthy population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号